Controlled growth and application of highly oriented surface-mounted metal-organic frameworks(SURMOFs)
- Metal-organic frameworks (MOFs) have emerged as a promising class of crystalline porous inorganic-organic hybrid materials showing a wide range of applications. In order to realize the integration of MOFs into specific devices, this thesis mainly focuses on the controlled growth and the properties of highly oriented surface-mounted metal-organic frameworks (SURMOFs).
The stepwise layer-by-layer (LbL) growth method exhibits vast advantages for the controllable growth of SURMOFs regarding the crystallite orientation, film thickness and homogeneity. However, up to date, only a few MOFs have been demonstrated to be suited for this protocol. So the first project of this thesis was designed to extend the applicability of the LbL growth. To this end, a semi-rigid linker based [Cu2(sdb)2(bipy)] (sdb = 4,4’-sulfonylbiphenyl dicarboxylate; bipy = 4,4’-bipyridine) MOF was chosen. Employing the LbL growth, [Cu2(sdb)2(bipy)] SURMOFs were successfully grown onto both pyridyl- and carboxyl-terminated surfaces at the temperature range of 15-65 °C. Interestingly, the orientation of the SURMOFs largely depends on temperature on both surfaces. At low temperatures (below 40 °C), SURMOFs with exclusive [010] orientation are obtained. In contrast, at high temperatures (40-65 °C), [001] oriented SURMOF growth is favored. A novel growth mode was demonstrated, which is, instead of surface chemistry, the temperature-induced ripening processes and the tendency to minimize surface energies can dominate the SURMOF growth.
Inspired by the advantages of LbL deposition of isoreticular SURMOFs, the second project was conceived to grow multivariate SURMOFs (MTV-SURMOFs) using mixed dicarboxylate linkers. We advance a hypothesis that linker acidity (expressed by the pKa values) may have an influence on the oriented growth of MTV-SURMOFs. To test the hypothesis, seven isoreticular [Cu2L2(dabco)] (L = single kind of dicarboxylate linker; dabco = 1,4-diazabicyclo[2.2.2]octane) SURMOFs were grown onto pyridyl-terminated surfaces at 60 °C. The quality of [001] orientation is greatly affected by the acidity of the linkers. With this observation, we deposited a series of [Cu2Lm2(dabco)] (Lm = mixed dicarboxylate linkers) SURMOFs under the same conditions. [Cu2Lm2(dabco)] SURMOFs with exclusive [001] orientation are obtained when the growth solution contains two linkers of relatively high pKa value or more than two kinds of linkers (independent of the pKa values), while the mixtures of ligands with relatively low pKa values or a high content of low pKa valued linkers can result in mis-oriented growth of SURMOFs with unexpected [100] orientation.
Moreover, the LbL growth shows enormous potential in the rational construction of functional SURMOFs. Therefore, the third project of this thesis was devised to deposit SURMOFs containing redox-active species. For this, the 4,4’-biphenyldicarboxylic acid (H2(bpdc)) linker was functionalized with ferrocene (Fc) and dimethyl ferrocene (Me2Fc) moieties. [Cu2(bpdc-amide-Fc)2(dabco)] SURMOF (Fc-SURMOF) is perfectly grown along the [100] direction, while mis-oriented growth of [Cu2(bpdc-amide-Me2Fc)2(dabco)] SURMOF (Me2Fc-SURMOF) was observed. Surprisingly, Fc-SURMOF shows excellent electrochemical properties due to the reversible oxidation and reduction of the ferrocene moieties in the oriented pores, while the Me2Fc-SURMOF was found to be a closely packed insulating layer since no extensive charge transfer is observed. A diffusion controlled mechanism of redox reaction is proposed, where the diffusion of the counter anions in the pores limits the current.
Besides the LbL growth protocol, the spin-coating technique is also promising for the oriented growth of SURMOFs. Driven by the specific applications, the fourth project of this thesis was planned to grow functional SURMOFs containing catalytically active units. The Keggin-type polyoxometalates (POMs) with high catalytic activities were chosen to functionalize the HKUST-1 SURMOFs. Combining the technique with methanol vapor induced growth, a series of POM functionalized HKUST-1 SURMOFs (denoted as POM@HKUST-1 SURMOFs) were controllably deposited onto pyridyl-terminated surfaces. The SURMOFs exhibit great potential as electrocatalysts in electrochemical devices due to the excellent redox properties of POMs. In addition, the PTA@HKUST-1 (PTA = phosphotungstic acid) SURMOF can be employed as an ideal platform for the selective loading of methylene blue (MB) dye with high efficiency. Owing to the strong binding between the dye molecules and the framework, the MB dye cannot be desorbed by ion exchange and MB loaded PTA@HKUST-1 SURMOF shows reliable redox properties under inert conditions, further confirming the application potential in electrochemical devices.