Light-inducible molecular beacons for spatio-temporal activation and visualising the maturation of microRNA-181 in neuronal dendrites

  • Die Etablierung der Festphasensynthese innerhalb der letzten Jahrzehnte macht hoch modifizierte Oligonukleotide verfügbar. Damit werden Methoden wie Einzelmolekül-aufgelöstes Tracking möglich, um beispielsweise den Weg einer einzelnen RNA von der Transkriptionsstelle im Nukleus bis zur Proteinbiosynthese im Cytoplasma verfolgen und kritische Stelle verstehen zu können. In den letzten Jahren entwickelten sich auch vermehrt Fragen zur lokalen Proteinsynthese. Dabei nimmt man besonders im Fall von polaren Zellen wie Neuronen an, dass die Proteinbiosynthese nicht global im Cytosol stattfindet, sondern es einen Transport der „ruhenden“ RNA bis zu dem Ort geben muss, an dem das entsprechende Protein lokal benötigt wird. In dieser vorliegenden Arbeit sollen nun in zwei Hauptprojekten molekulare Werkzeuge entwickelt werden, mit deren Hilfe oben genannte Fragestellungen in Zukunft beantwortet werden könnten. Im ersten Hauptprojekt wurde dazu eine neue Generation lichtaktivierbarer Molecular Beacons (von engl.: molekulare Leuchtfeuer) entwickelt. Dabei handelt es sich um Oligonukleotide, die komplementär zu einer intrazellulären RNA-Sequenz (Target-RNA) sind und mit Fluorophor und Fluoreszenz-Quencher modifiziert werden. Bei den lichtaktivierbaren Designs kann Fluoreszenz detektiert werden, wenn der Molecular Beacon an seine Targetsequenz gebunden und zusätzlich zuvor eine Lichtaktivierung stattgefunden hat. Im Gegensatz zu früheren Designs wurde bei diesem hier vorgestellten Molecular Beacon der Fluorophor mit Hilfe eines zweiten photoabspaltbaren Quenchers verbunden. Dadurch kann der Beacon an seine Targetsequenz binden, obwohl noch keine Lichtaktivierung stattgefunden hat. Fluoreszenz kann allerdings erst nach photoinduzierter Abspaltung des zusätzlichen Quenchers detektiert werden. In der vorliegenden Studie konnten dadurch extrem gute Signal-zu-Rausch-Verhältnisse von bis zu 170:1 erreicht werden. Zusätzlicher Vorteil dieses Designs ist die Tatsache, dass eine Vielzahl kommerziell erhältlicher Fluorophor-Quencher-Paare verwendet werden kann. Dabei ist es nicht relevant, ob der entsprechende Farbstoff co-synthetisch während der Festphasensynthese oder post-synthetisch durch die Modifikation funktioneller Gruppen angebracht wird. Nach anfänglichen in vitro Tests wurden die besten Molecular Beacons in vivo in der Zuckmücken-Art Chironomus tentans getestet. Dieser Organismus ist aufgrund seiner Polytänchromosomen, der sog. Balbiani Ringe, interessant. Dabei handelt es sich um ein Chromosom, das viele Chromatiden mit jeweils identischen Gensequenzen enthält. Diese Balbiani Ringe haben eine sehr charakteristische Struktur. Die Molecular Beacons wurden in den Zellkern injiziert und anschließend photoinduziert. Auch in den in vivo Messungen zeigte sich die Überlegenheit des neuen Design mit Signal-zu-Rausch-Verhältnissen von bis zu 80:1. Im zweiten Hauptprojekt war es das Ziel, lokale mikroRNA-Reifung in Neuronen nachzuweisen bzw. sichtbar zu machen. MikroRNA (kurz miRNA) ist einer der wichtigsten zellulären Werkzeuge, um Genregulation auf post-transkriptioneller Ebene zu ermöglichen. Für dieses Projekt wurde eine Sonde entwickelt, die den nativen miRNA-Vorläufer – die sog. prä-miRNA – nachbildet. Der enzymatische Reifungsprozess durch die RNase Dicer sollte durch Fluoreszenz nachweisbar sein. Dies gelang durch Modifikationen der Sequenz um die enzymatische Schnittstelle herum. Durch den Dicer-vermittelten, enzymatischen Verdau wurde ein Fluorophor von einem Quencher getrennt, wobei der fluoreszente Farbstoff an der reifen mikroRNA verblieb. Nach der Etablierung der in vitro Tests und Auswahl des optimalen Fluorophor-Quencher-Paars zeigte sich in einem Kontrollexperiment, dass bei Verwendung von neuronalen Ganglien aus Dicer-Knock-Out Mäusen kein Fluoreszenzanstieg zu beobachten war. Dieses Experiment bewies, dass bisher beobachtete Fluoreszenzanstiege Dicer-spezifisch waren. Im nächsten Schritt wurden in vivo Messungen durchgeführt. Es zeigte sich dabei, dass die sog. Patch Clamp Technik herkömmlichen Transfektionsmethoden überlegen war. Unter normalen Bedingungen zeigte sich sowohl im Soma als auch in den Dendriten ein Fluoreszenzanstieg. Durch Depolarisation des Neurons konnte dieser Effekt noch verstärkt werden, wobei das somatische Signal grundsätzlich als höher einzustufen war. Interessanterweise führte eine Blockade der NMDA-Rezeptoren auch bei gleichzeitiger Depolarisation zu einer verringerten Fluoreszenz. Dies lässt darauf schließen, dass die Reifung der untersuchten prä-miRNA in Dendriten von der Aktivität des NMDA-Rezeptors bzw. einem als Konsequenz ansteigenden Ca2+-Spiegels in der Zelle abhängig ist. In einem weiteren Experiment wurde nach „Beladung“ eines Neurons mit der prä-miRNA-Sonde Dendriten punktuell aktiviert. Dies konnte durch Licht-aktivierbares Glutamat erreicht werden. Im zentralen Nervensystem gilt Glutamat als der wichtigste aktivierende Neurotransmitter. Es konnte beobachtet werden, wie einerseits Fluoreszenz lokal an der aktivierten Stelle anstieg und gleichzeitig sog. dendritische Spines wuchsen. Zum Teil war auch ein Wachstum benachbarter Spines zu beobachten. Dabei handelt es sich um pilzförmige Aussackungen der Dendriten an Stellen, an denen Vernetzungen zu Synapsen anderer Neuronen existieren. Als Ergebnis kann geschlussfolgert werden, dass es eine lokale Reifung der untersuchten prä-miRNA durch Dicer in Dendriten gibt. Dieser Prozess kann sehr spezifisch und lokal durch die Aktivierung einzelner synaptischer Verbindungen initiiert werden.

Download full text files

  • PhD Thesis Jennifer Rinne
    eng

Export metadata

Metadaten
Author:Jennifer Sarah Rinne
URN:urn:nbn:de:hebis:30:3-424483
Place of publication:Frankfurt am Main
Referee:Alexander HeckelORCiD, Erin Schuman
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/12/20
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/09/02
Release Date:2016/12/20
Page Number:187
First Page:V
Last Page:169
HeBIS-PPN:397151616
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht