Conformational control of organic molecules by azobenzene-based photoswitches : a spectroscopic study

  • Für die Optimierung sowie Entwicklung lichtsteuerbarer Systeme für biologische Anwendungen oder neue Materialien ist ein detailliertes Verständnis der zugrunde liegenden komplexen, lichtinduzierten Prozesse eine Voraussetzung. Die Verwendung von Photoschaltern in Makromolekülen ermöglicht eine zeitliche und örtliche Kontrolle über strukturelle Änderungen sowie die entsprechend folgenden (biologischen) Funktionen durch die Verwendung von Licht als externem Auslöser. Ein wichtiger Bestandteil dieser Arbeit befasst sich mit der Entwicklung eines auf Licht reagierenden Riboschalters, welcher die gezielte Kontrolle über Genexpression ermöglicht. Hierzu wurde eine spektroskopische Charakterisierung von verschiedenen Photoschaltern bezüglich einer Verwendung als biologischer Ligand sowie der Wechselwirkungen zwischen Azobenzolen und RNA, auch hinsichtlich ihrer Bindungsdynamiken durchgeführt. Zunächst wurde die hohe Abhängigkeit der (photo-)chemischen Eigenschaften der Azobenzole von der Wahl der Substituenten untersucht, wobei besonders die Anwendung in wässrigem Milieu betrachtet wurde. In einer detaillierten (zeitaufgelösten) Studie wurde der positionsabhängige Einfluss der Hydroxy-Substitution von Azobenzolen auf die Photoisomerisierung in wässriger Lösung untersucht. Für eine ortho-Substitution ergab sich hierbei ein alternativer Deaktivierungskanal nach Photoanregung, welcher stärker ausgeprägt ist als die Isomerisierung. Hierbei wird ein intramolekularer Protontransfer im angeregten Zustand (ESIPT) beobachtet, welcher mit einer Zeitkonstante von 0.3 ps beschrieben werden kann und in einer Keto-Spezies resultiert. Eine Keto-Enol-Tautomerie konnte für die para-Hydroxy-Substitution schon im Grundzustand beobachtet werden. Somit können beide Spezies gezielt adressiert werden. Durch Acetylierung der Hydroxygruppe verlangsamt sich die thermische Relaxation des cis-Isomer zu dem entsprechenden trans-Isomer signifikant ohne die Isomerisierung zu beeinträchtigen. Dementsprechend ermöglicht eine solche Acetylierung die Verwendung von bekannten Azobenzolderivaten als Photoschalter. Zudem werden in dieser Arbeit zwei verschiedene Herangehensweisen in der Entwicklung eines Riboschalters beschrieben, welcher sich durch Licht regulieren lässt. Diese sind durch kovalentes bzw. nicht-kovalentes Einbringen eines Azobenzolderivats in die RNA Struktur charakterisiert. Ein neuer Linker, welcher auf einer Desoxyribose-Struktur beruht, wird für die kovalente Anbindung des Azobenzols an den RNA Strang präsentiert, welcher eine licht-induzierte Dehybridisierung ermöglichen soll. Eine außergewöhnlich hohe Schaltamplitude mit einem cis-Gehalt von etwa 90% konnte für das Azobenzol im RNA Einzelstrang schon bei Raumtemperatur ermittelt werden. Zudem wurde der Einfluss des Photoschalters sowie der benachbarten Nukleotide in der RNA auf die Stabilität der RNA Doppelhelix untersucht. Die zweite Vorgehensweise beruht auf einer nicht-kovalenten Bindung zwischen einem Azobenzolderivat und einem RNA-Aptamer, welche lediglich für eines der Photoisomere ermöglicht wird, wodurch eine örtliche und zeitliche Kontrolle der Ligandenbindung der RNA erfolgt. Im Rahmen dieser Arbeit war es möglich zwei verschiedene photoschaltbare RNA Aptamere zu identifizieren und zu untersuchen, welche eine hohe Spezifität und Affinität aufweisen. Zudem wurde die Photoisomerisierung des Azobenzols innerhalb der RNA-Struktur sowie daraus resultierende lichtinduzierte Konformationsänderungen der RNA mittels zeitaufgelöster Anreg-/Abtastspektroskopie untersucht. Die daraus resultierende Dynamik der photoinduzierten Ligandenbindung sollte eine weitere gezielte Optimierung lichtschaltbarer biologischer Systeme erlauben. Der zweite Teil dieser Arbeit beschäftigt sich mit der zeitaufgelösten Untersuchung eines photoschaltbaren Foldamers. Speziell wurde der strukturelle Übergang des OmPE-Foldamers 10-5 zwischen einer definierten helikalen und einer ungefalteten Konformation auf Grund der Photoisomerisierung der, in das Rückgrat integrierten, Azobenzole untersucht. Dabei konnten die frühen (Ent-)Faltungsmechanismen des Foldamers im sub-Nanosekunden-Zeitbereich beobachtet werden, welche durch quantenmechanische Rechnungen unterstützt werden konnten. Darüberhinaus, war es möglich einen Anregungsenergietransfer vom PE-Rückgrat des Foldamers auf die Azobenzole nachzuweisen, welcher die Lebensdauer der angeregten Zustände des Systems signifikant verkürzt. Diese Arbeit liefert wichtige Informationen zu den Reaktionspfaden, den gezielten Wechselwirkungen zwischen Photoschaltern und größeren organischen Molekülen, sowie den daraus resultierenden lichtinduzierten strukturellen Änderungen durch die Anwendung einer Vielzahl an (zeitaufgelösten) spektroskopischen Methoden. Diese Ergebnisse tragen zum weiteren Verständnis komplexer Prozesse in biologischem sowie nicht-biologischem Zusammenhang und somit zu einer weiterführenden Entwicklung neuer Systeme bei.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Sabrina Steinwand
URN:urn:nbn:de:hebis:30:3-425326
Place of publication:Frankfurt am Main
Referee:Josef WachtveitlORCiDGND, Alexander HeckelORCiD
Advisor:Josef Wachtveitl
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/12/22
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/12/20
Release Date:2016/12/22
Page Number:210
HeBIS-PPN:397083467
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht