The Hippo signaling transducers Yap1/Wwtr1 in zebrafish development

  • Tissue size regulation is critical for the normal functioning of the organ as well as to prevent unwanted pathogenesis such as cancer. The Hippo signaling pathway is well known for its robust regulation of tissue growth by the negative regulation of its nuclear effectors YAP1 and WWTR1. In this study, I have described the role of Yap1/Wwtr1 in zebrafish development, with a primary emphasis on the cardiovascular system. I have generated zebrafish yap1 and wwtr1 mutants by CRISPR/CAS9. The mutant alleles are likely to be nonfunctional due to a premature stop codon and they show evidence of nonsense-mediated decay. Given that Yap1 and Wwtr1 are closely related proteins and have overlapping functions, I am given the opportunity to perform combinatorial analysis of the mutations on zebrafish development. Together with molecular probing tools, high-throughput sequencing and high-resolution imaging, I showed that 1. Double yap1;wwtr1 mutants exhibit severe posterior elongation phenotype, but somitogenesis appears to proceed as usual. 2. Yap1 and Wwtr1 may play an important role in PCV development and secondary angiogenic sprouting. However, key experiments will be needed to elucidate the direct role of Yap1 and Wwtr1 on these processes. 3. wwtr1-/- larvae hearts have a reduction in trabeculation, but in mosaic WT hearts, mutant cardiomyocytes prefer to populate the trabecular layer. My studies revealed that the mutant compact wall could not support trabeculation, which explains the hypotrabeculation phenotype of wwtr1-/- hearts. Additionally, Wwtr1 is required for myocardial Notch activity and can inhibit compact wall cardiomyocytes from entering the trabecular layer. In summary, the Hippo signaling pathway, through Yap1/Wwtr1 has important regulatory functions in growth control. My work has revealed a surprising role for Yap1/Wwtr1 in tissue morphogenesis such as posterior tail morphogenesis and specific developmental processes of the cardiovascular system. It will be of interest to elucidate the regulation of Yap1/Wwtr1 in individual cells that translates into the complex cellular behaviors that drives morphogenesis.

Download full text files

Export metadata

Metadaten
Author:Jason Lai Kuan Han
URN:urn:nbn:de:hebis:30:3-456958
Place of publication:Frankfurt am Main
Referee:Didier StainierORCiD, Virginie LecaudeyORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2018/09/02
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/02/09
Release Date:2018/02/15
Tag:development; hippo; wwtr1; yap1; zebrafish
Page Number:145
HeBIS-PPN:426449746
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht