3D imaging and quantitative analysis of vascular networks : a comparison of ultramicroscopy and micro-computed tomography

  • Rationale: Classic histology is the gold standard for vascular network imaging and analysis. The method however is laborious and prone to artefacts. Here, the suitability of ultramicroscopy (UM) and micro-computed tomography (CT) was studied to establish potential alternatives to histology. Methods: The vasculature of murine organs (kidney, heart and atherosclerotic carotid arteries) was visualized using conventional 2D microscopy, 3D light sheet ultramicroscopy (UM) and micro-CT. Moreover, spheroid-based human endothelial cell vessel formation in mice was quantified. Fluorescently labeled Isolectin GS-IB4 A647 was used for in vivo labeling of vasculature for UM analysis, and analyses were performed ex vivo after sample preparation. For CT imaging, animals were perfused postmortem with radiopaque contrast agent. Results: Using UM imaging, 3D vascular network information could be obtained in samples of animals receiving in vivo injection of the fluorescently labeled Isolectin GS-IB4. Resolution was sufficient to measure single endothelial cell integration into capillaries in the spheroid-based matrigel plug assay. Because of the selective staining of the endothelium, imaging of larger vessels yielded less favorable results. Using micro-CT or even nano-CT, imaging of capillaries was impossible due to insufficient X-ray absorption and thus insufficient signal-to-noise ratio. Identification of lumen in murine arteries using micro-CT was in contrast superior to UM. Conclusion: UM and micro-CT are two complementary techniques. Whereas UM is ideal for imaging and especially quantifying capillary networks and arterioles, larger vascular structures are easier and faster to quantify and visualize using micro-CT. 3D information of both techniques is superior to 2D histology. UM and micro-CT together may open a new field of clinical pathology diagnosis.

Download full text files

Export metadata

Author:Jeremy EpahGND, Katalin Pálfi, Franziska Luise Dienst, Pedro Felipe Malacarne, Rolf Bremer, Michael Salamon, Sandeep Kumar, Hanjoong Jo, Christoph Schürmann, Ralf Peter Louis BrandesORCiDGND
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/29721067
Parent Title (English):Theranostics
Place of publication:Wyoming, NSW
Document Type:Article
Year of Completion:2018
Date of first Publication:2018/03/07
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2018/05/15
Tag:Light sheet fluorescence microscopy; Micro-CT; Ultra microscopy
Page Number:17
First Page:2117
Last Page:2133
This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions.
Institutes:Medizin / Medizin
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (English):License LogoCreative Commons - Namensnennung-Nicht kommerziell 4.0