Predictive monocular odometry using propagation-based tracking

  • The technology of advanced driver assistance systems (ADAS) has rapidly developed in the last few decades. The current level of assistance provided by the ADAS technology significantly makes driving much safer by using the developed driver protection systems such as automatic obstacle avoidance and automatic emergency braking. With the use of ADAS, driving not only becomes safer but also easier as ADAS can take over some routine tasks from the driver, e.g. by using ADAS features of automatic lane keeping and automatic parking. With the continuous advancement of the ADAS technology, fully autonomous cars are predicted to be a reality in the near future. One of the most important tasks in autonomous driving is to accurately localize the egocar and continuously track its position. The module which performs this task, namely odometry, can be built using different kinds of sensors: camera, LIDAR, GPS, etc. This dissertation covers the topic of visual odometry using a camera. While stereo visual odometry frameworks are widely used and dominating the KITTI odometry benchmark (Geiger, Lenz and Urtasun 2012), the accuracy and performance of monocular visual odometry is much less explored. In this dissertation, a new monocular visual odometry framework is proposed, namely Predictive Monocular Odometry (PMO). PMO employs the prediction-and-correction mechanism in different steps of its implementation. PMO falls into the category of sparse methods. It detects and chooses keypoints from images and tracks them on the subsequence frames. The relative pose between two consecutive frames is first pre-estimated using the pitch-yaw-roll estimation based on the far-field view (Barnada, Conrad, Bradler, Ochs and Mester 2015) and the statistical motion prediction based on the vehicle motion model (Bradler, Wiegand and Mester 2015). The correction and optimization of the relative pose estimates are carried out by minimizing the photometric error of the keypoints matches using the joint epipolar tracking method (Bradler, Ochs, Fanani and Mester 2017). The monocular absolute scale is estimated by employing a new approach to ground plane estimation. The camera height over ground is assumed to be known. The scale is first estimated using the propagation-based scale estimation. Both of the sparse matching and the dense matching of the ground features between two consecutive frames are then employed to refine the scale estimates. Additionally, street masks from a convolutional neural network (CNN) are also utilized to reject non-ground objects in the region of interest. PMO also has a method to detect independently moving objects (IMO). This is important for visual odometry frameworks because the localization of the ego-car should be estimated only based on static objects. The IMO candidate masks are provided by a CNN. The case of crossing IMOs is handled by checking the epipolar consistency. The parallel-moving IMOs, which are epipolar conformant, are identified by checking the depth consistency against the depth maps from CNN. In order to evaluate the accuracy of PMO, a full simulation on the KITTI odometry dataset was performed. PMO achieved the best accuracy level among the published monocular frameworks when it was submitted to the KITTI odometry benchmark in July 2017. As of January 2018, it is still one of the leading monocular methods in the KITTI odometry benchmark. It is important to note that PMO was developed without employing random sampling consensus (RANSAC) which arguably has been long considered as one of the irreplaceable components in a visual odometry framework. In this sense, PMO introduces a new style of visual odometry framework. PMO was also developed without a multi-frame bundle adjustment step. This reflects the high potential of PMO when such multi-frame optimization scheme is also taken into account.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Nolang Fanani
Place of publication:Frankfurt am Main
Referee:Rudolf Mester, Matthias KaschubeORCiDGND
Document Type:Doctoral Thesis
Year of Completion:2018
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/10/18
Release Date:2018/11/01
Page Number:xvi, 163
Institutes:Informatik und Mathematik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoDeutsches Urheberrecht