Spectroscopic studies on photosensitive probes : molecular dynamics of RNA-protein complexes, caged and photoswitchable compounds

  • Die Steuerung biochemischer Prozesse oder die Verbesserung von Materialien erfordert zunächst ein tiefgründiges Verständnis über die zugrundeliegenden Systeme. Zur Untersuchung eignet sich Licht als ideales Werkzeug, da hiermit nützliche Informationen über die chemische Struktur, ihre Eigenschaften sowie den zusammenhängenden, schnellen Reaktionsabläufen erhalten werden können. Um die Aufklärung zu erleichtern können kleine, chemische Verbindungen eingeführt werden, welche beispielsweise ein Fluoreszenzmarker, eine photolabile Schutzgruppe oder eine photoschaltbare Verbindung sein können. Von jeweils einem Vertreter dieser Moleküle wurden unterschiedliche Studien durchgeführt, dessen Ergebnisse in dieser Arbeit in insgesamt drei Projekten zusammengefasst werden. Zunächst wurde die Funktionalität der Helikase RhlB untersucht, die der Familie der DEAD-Box Proteine zugeordnet wird, und RNA-Duplexe in ihre Einzelstränge entwindet. Als RNA-Modellduplex diente JM2h, an dem ein RNA-Einzelstrang fluoreszenzmarkiert war (M2AP6). Die Einführung dieses Markers ermöglichte die Durchführung von statischen Fluoreszenzmessungen sowie von Mischexperimenten, die mit Hilfe der stopped-flow-Technik durchgeführt wurden. In den einleitenden Studien wurde die Helikase weggelassen, wodurch der Fokus auf den Fluoreszenzeigenschaften der RNA gelegt wurde. Die Ergebnisse hierzu zeigten, dass die Fluoreszenzintensität des Einzelstrangs durch Zugabe des komplementären Strangs deutlich abnimmt, wobei das Minimum bei einem äquimolaren Verhältnis erreicht wird. Die dazugehörigen stopped-flow-Messungen zeigten eine Beschleunigung der Hybridisierungsreaktion, wenn höhere Konzentrationen des Gegenstrangs in der Lösung vorhanden waren. Nach anschließender Zugabe der Helikase zur Lösung wurde ein Anstieg der Fluoreszenzintensität erwartet, der vom separierten Einzelstrang M2AP6 herrühren sollte. Dieser Anstieg wurde jedoch erst nach weiterer Zugabe von ATP beobachtet, der auf eine ATP-Abhängigkeit der Entwindungsreaktion von RhlB hindeutet. Diese Abhängigkeit wurde auch bereits für andere Helikasen der DEAD-Box Familie entdeckt. Die korrekte Funktionalität sowie die ATP-Abhängigkeit wurden in stopped-flow-Messungen verfiziert, bei denen der Fluoreszenzanstieg auch zeitaufgelöst betrachtet werden konnte. Für die spektralen Korrekturen der Fluoreszenzspektren wurde ein selbstgeschriebenes MATLAB-Programm namens FluCY verwendet (engl.: Fluorescence Correction & Quantum yield), welches eine schnelle und fehlerfreie Verarbeitung des Datensatzes ermöglichte. Die zwei im folgenden beschriebenen Projekte handeln von photoaktivierbaren Molekülen. Zum einen photolabile Verbindungen, welche die Funktion z.B. eines Biomoleküls durch eine chemische Modifikation deaktivieren können. Durch eine lichtinduzierte Reaktion kommt es zur Abspaltung der Modifikation und die Funktion ist wiederhergestellt. In dieser Arbeit wurden verschiedene photolabile Schutzgruppen untersucht, die denselben Chromophor BIST (BIsStyryl-Thiophen) tragen. Durch die Einführung dieses Chromophors absorbierten sämtliche untersuchte Verbindungen sehr effizient sichtbares Licht (epsilon(445)=55.700 M^(-1) cm^(-1)), wodurch der photoinduzierte Bindungsbruch mit Wellenlängen durchgeführt werden, die bei einer biologischen Anwendungen keinen Schaden an der Zelle anrichten würden. Hieraufhin wurden in statischen und zeitaufgelösten Absorptionsmessungen Teilschritte der Freisetzungsreaktion untersucht, indem nach Photoanregung die Absorptionsänderungen auf verschiedenen Zeitskalen analysiert wurden. Die ultraschnelle Dynamik im Piko- bis Nanosekundenbereich (10^(-12)-10^(-9) s) wird durch eine spektral breite, positive Absorptionsänderng dominiert. Diese impliziert, dass die Deaktivierung über den Triplettpfad abläuft, der die vergleichsweise niedrigen Freisetzungsausbeuten erklärt (phi(u) < 5). Aufgrund des hohen Extinktionskoeffizienten reichen dennoch bereits niedrige Strahlungsdosen aus, um eine Freisetzung zu initiieren. Der geschwindigkeitsbestimmende Schritt dieser Reaktion ist dem Zerfall des aci-nitro Intermediats zugeordnet. Für ein sekundäres Amin, welches mit BIST geschützt wurde, ist eine Lebensdauer des Intermediats von 71 µs gefunden worden. In einigen Fällen ist es erwünscht, eine vorliegende Aktivität nicht nur ein-, sondern auch ausschalten zu können, wofür photochrome Verbindungen (oder Photoschalter) verwendet werden. Die in dieser Arbeit untersuchte Verbindung ceCAM ist ein Alken-Photoschalter und vollführt bei Bestrahlung mit Licht eine cis/trans-Isomerisierung. ceCAM ist das Cyanoester-Derivat (ce) von Cumarin-substituierten Allylidenmalonat, von denen beide Konformere sehr effizient sichtbares Licht absorbieren trans: epsilon(489)=50.300 M^(-1) cm^(-1); cis: epsilon(437)=18.600 M^(-1) cm^(-1)). Andere photophysikalische Eigenschaften umfassen u.a. hohe thermische und photochemische Stabilität. Letztere wurde über ein Experiment nachgewiesen, bei dem die lichtinduzierte Isomerisierung alternierend durchgeführt wurde und selbst bei über 250 Zyklen keine signifikate Abnahme der Absorption beobachtet werden konnte. Des Weiteren konnte die Reaktion mit Quantenausbeuten von 39% (trans) und 42% (cis) induziert werden, wobei im photostationären Gleichgewicht auch hohe Isomerenverhältnisse mit bis zu 80% (trans) und 96% (cis) akkumuliert werden konnten. Die Geschwindigkeit der Reaktion wurde mit Hilfe der Ultakurzzeit-Spektroskopie untersucht. Die Dynamik im Zeitbereich von ps-ns zeigte, dass die trans/cis-Isomerisierung unterhalb von 0,5 ns und die umgekehrte Reaktion noch viel schneller (wenige ps) abgeschlossen ist. Durch die Untersuchungen in dieser Arbeit an den BIST-Verbindungen und ceCAM sind viele vorteilhafte, photophysikalische Eigenschaften charakterisiert worden, wodurch sie als verbesserte Alternative zu den bisher bekannten photolabilen Schutzgruppen oder Photoschaltern anzusehen sind.

Download full text files

Export metadata

Metadaten
Author:Dinh Du Tran
URN:urn:nbn:de:hebis:30:3-500054
Place of publication:Frankfurt am Main
Referee:Josef WachtveitlORCiDGND, Alexander HeckelORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/04/03
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/02/01
Release Date:2019/04/04
Tag:Ultrakurzzeit-Spektroskopie
photocages; photoswitches; ultrafast spectroscopy
Page Number:193
HeBIS-PPN:447163868
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht