Structural investigations on the interaction and phosphorylation of TAp63

  • Die Tumorprotein-Familie des Proteins p53 besteht aus drei Familienmitgliedern p53, p63 und p73 mit diversen Funktionen als Transkriptionsfaktoren. p53 war das erste Mitglied dieser Familie, das im Jahre 1979 entdeckt wurde und wurde zunächst als krebsverursachendes Protein eingeordnet, weil es in vielen Tumorgeweben in erhöhter Menge vorgefunden wurde. Es wurde allerdings festgestellt, dass der Großteil dieser gefundenen p53-Proteine funktionsunfähig durch Mutationen in ihrer Aminosäuresequenz waren. Unmutiertes p53 hingegen führt zu einem Stopp von Zellteilung oder sogar Zelltod, sofern die Zellen genetischem Stress durch Strahlung oder mutagene Chemikalien ausgesetzt sind. Heute wird p53 als eines der wichtigsten Tumor-Unterdrückungsproteine betrachtet. Die beiden anderen Familienmitglieder p63 und p73 existieren in einer Vielzahl von Isoformen. Neben carboxyterminaler alternativer mRNA-Prozessierung (α, β, γ, usw. Isoformen) führen zwei unabhängige Promotoren auch zu zwei unterschiedlichen Aminotermini. Hier wird zwischen ΔN- und TA-Isoformen unterschieden. Im Falle von p63 treten zwei dominante Isoformen auf, ΔNp63α und TAp63α. Während ΔNp63α eine Rolle in der Differenzierung von Haut spielt, wurde TAp63α bisher ausschließlich in Eizellen gefunden. Dort hat es die Funktion eines Sensors, der die genetische Integrität der weiblichen Keimbahn sicherstellt. Es liegt in Eizellen in hoher Konzentration vor, allerdings in einer komplett inaktiven Form. Werden Schäden im der Erbgut der Eizelle festgestellt, so wird das Protein aktiviert und kann so den Prozess des Zelltods der Eizelle einleiten. Mutationen oder das Fehlen des p63-Genes führen zu Missbildungen während der Entwicklung und zu unvollständig ausgebildeter Haut. Im Falle von p73 gibt es ebenfalls mehrere Isoformen, wobei die Funktionen und Relevanzen der einzelnen Isoformen bisher nicht komplett geklärt werden konnten. Eine p73-negative Maus hat einen diffusen Phänotyp, der sich durch niedrige Intelligenz, fast sterile Männchen und chronische bronchiale Infektion auszeichnet. Generell sind alle Mitglieder der p53-Familie tetramere Proteine und sind nur in diesem Zustand auch aktiv. Die einzige Ausnahme stellt, wie oben beschrieben, TAp63α dar, das in einem inaktiven dimeren Zustand vorliegt und nur durch Modifikation durch zwei unabhängige Kinasen aktiviert werden kann. Dabei geht es in den tetrameren Zustand über und ist daraufhin aktiv. Alle drei Proteine haben (anhand ihrer längsten Isoform beschrieben) eine konservierte Domänenstruktur. Am Aminoterminus befindet sich zunächst die transaktivierende-Domäne (TAD), die für Interaktionen mit transkriptionellen Koaktivatioren relevant ist. Danach folgt die stark konservierte Desoxyribonukleinsäure (DNA) bindende Domäne (DBD). Sie stellt sicher, dass der Transkriptionsfaktor sequenzspezifisch an der richtigen Stelle auf die DNA bindet. Weitergehend folgt die Tetramerisierungsdomäne (TD), welche den oligomeren Zustand des Proteins herstellt. Im Falle von p53 endet das Protein an dieser Stelle, bei p63 und p73 folgen noch das Sterile-Alpha-Motiv (SAM) und die Transkription-inhibierende Domäne (TID). Die SAM Domäne wird generell als Interaktionsdomäne beschrieben, es konnte allerdings bis dato kein Interaktionspartner gefunden werden. Die TID hat einen negativen Einfluss auf die transkriptionelle Aktivität der Proteine. Im Falle von TAp63α interagiert sie zusätzlich mit der TAD um den Dimeren Zustand zu stabilisieren. Histon Acetylasen Die Acetylierung von Histonen ist neben deren Methylierung die wichtigste Modifikation. Sie ist essenziell für die Transkription innerhalb aller eukaryontischen Lebewesen, da sie durch die Modifikation von Histonen die DNA für die DNA-Polymerase II zugänglich macht. Es gibt insgesamt fünf verschiedene, nicht näher miteinander verwandte Familien von Histonacetylasen. Diese Studie beschäftigt sich ausschließlich mit der KAT3 Familie, bestehend aus den Proteinen p300 und CBP. Beide sind hochgradig konserviert, in gefalteten Bereichen der Proteine erreicht die Sequenzidentität fast 100%. Beide Proteine scheinen sehr ähnliche Aufgaben zu erfüllen, die jedoch nicht komplett identisch sind. Die Fehlfunktion von einem Allel von CBP führt zum Krankheitsbild des Rubinstein-Taybi-Syndrom (RTS), während ein Mangel an p300 sich in Mäusen auf das Gedächtnis auswirkt. Der komplette Verlust beider Allele eines der Proteine ist immer tödlich, genauso wie auch Verlust jeweils eines Allels bei beiden Proteinen. Insgesamt vier unabhängige Domänen in p300/CBP sind in der Lange die transaktivierende Domänen der p53-Familie zu binden. Bei zwei der Domänen handelt es sich um Zinkfinger-Proteine (Taz1 und Taz2), die anderen beiden sind kleine, ausschließlich α-helikale Domänen (Kix und IBiD). Diese Studie beschäftigt sich mit der Lösung von Strukturen von der transaktivierenden Domäne von p63 und p73 mit der p300-Domäne Taz2. Außerdem wurden die Auswirkungen von direkten Acetylierungen von TAp63α charakterisiert und der Effekt von einem potenten p300/CBP Inhibitor auf Oozyten unter genotoxischem Stress analysiert. Zusätzlich wurde die Phosphorylierungskinetiken von Tap63α wärend der Aktivierung durch Kinasen untersucht. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jakob Gebel
URN:urn:nbn:de:hebis:30:3-500199
Place of publication:Frankfurt am Main
Referee:Volker DötschORCiDGND, Clemens Glaubitz
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2019/04/09
Year of first Publication:2018
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/04/04
Release Date:2019/04/18
Page Number:214
HeBIS-PPN:447824244
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht