Development of a read-out receiver card for fast processing of detector data : ALICE HLT run 2 readout upgrade and evaluation of dataflow hardware description for high energy physics readout applications

  • Programmable hardware in the form of FPGAs found its place in various high energy physics experiments over the past few decades. These devices provide highly parallel and fully configurable data transport, data formatting, and data processing capabilities with custom interfaces, even in rigid or constrained environments. Additionally, FPGA functionalities and the number of their logic resources have grown exponentially in the last few years, making FPGAs more and more suitable for complex data processing tasks. ALICE is one of the four main experiments at the LHC and specialized in the study of heavy-ion collisions. The readout chain of the ALICE detectors makes use of FPGAs at various places. The Read-Out Receiver Cards (RORCs) are one example of FPGA-based readout hardware, building the interface between the custom detector electronics and the commercial server nodes in the data processing clusters of the Data Acquisition (DAQ) system as well as the High Level Trigger (HLT). These boards are implemented as server plug-in cards with serial optical links towards the detectors. Experimental data is received via more than 500 optical links, already partly pre-processed in the FPGAs, and pushed towards the host machines. Computer clusters consisting of a few hundred nodes collect, aggregate, compress, reconstruct, and prepare the experimental data for permanent storage and later analysis. With the end of the first LHC run period in 2012 and the start of Run 2 in 2015, the DAQ and HLT systems were renewed and several detector components were upgraded for higher data rates and event rates. Increased detector link rates and obsolete host interfaces rendered it impossible to reuse the previous RORCs in Run 2. This thesis describes the development, integration, and maintenance of the next generation of RORCs for ALICE in Run 2. A custom hardware platform, initially developed as a joint effort between the ALICE DAQ and HLT groups in the course of this work, found its place in the Run 2 readout systems of the ALICE and ATLAS experiments. The hardware fulfills all experiment requirements, matches its target performance, and has been running stable in the production systems since the start of Run 2. Firmware and software developments for the hardware evaluation, the design of the board, the mass production hardware tests, as well as the operation of the final board in the HLT, were carried out as part of this work. 74 boards were integrated into the HLT hardware and software infrastructure, with various firmware and software developments, to provide the main experimental data input and output interface of the HLT for Run 2. The hardware cluster finder, an FPGA-based data pre-processing core from the previous generation of RORCs, was ported to the new hardware. It has been improved and extended to meet the experimental requirements throughout Run 2. The throughput of this firmware component could be doubled and the algorithm extended, providing an improved noise rejection and an increased overall mean data compression ratio compared to its previous implementation. The hardware cluster finder forms a crucial component in the HLT data reconstruction and compression scheme with a processing performance of one board equivalent to around ten server nodes for comparable processing steps in software. The work on the firmware development, especially on the hardware cluster finder, once more demonstrated that developing and maintaining data processing algorithms with the common low-level hardware description methods is tedious and time-consuming. Therefore, a high-level synthesis (HLS) hardware description method applying dataflow computing at an algorithmic level to FPGAs was evaluated in this context. The hardware cluster finder served as an example of a typical data processing algorithm in a high energy physics readout application. The existing and highly optimized low-level implementation provided a reference for comparisons in terms of throughput and resource usage. The cluster finder algorithm could be implemented in the dataflow description with comparably little effort, providing fast development cycles, compact code and at, the same time, simplified extension and maintenance options. The performance results in terms of throughput and resource usage are comparable to the manual implementation. The dataflow environment proved to be highly valuable for design space explorations. An integration of the dataflow description into the HLT firmware and software infrastructure could be demonstrated as a proof of concept. A high-level hardware description could ease both the design space exploration, the initial development, the maintenance, and the extension of hardware algorithms for high energy physics readout applications.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Heiko EngelORCiDGND
Place of publication:Frankfurt am Main
Referee:Udo KebschullGND, Lars HedrichGND
Document Type:Doctoral Thesis
Date of Publication (online):2019/07/20
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/07/10
Release Date:2019/07/25
Tag:ALICE; Dataflow Computing; Detector Readout; FPGA; High Level Synthesis
Page Number:208
Institutes:Informatik und Mathematik / Informatik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Licence (German):License LogoDeutsches Urheberrecht