Characterization of the role of host factors in the paramyxovirus life cycle

  • Paramyxo- and pneumoviruses include many pathogens with great relevance for human and animal health. To identify common host factors involved in the Paramyxo- and Pneumoviridae life cycle as a basis for new insights in the biology of these viruses and the development of rationally designed therapeutics, genome scale siRNA screens with wild-type measles, mumps, and respiratory syncytial viruses in A549 cells, a human lung adenocarcinoma cell line, were performed. A comparative bioinformatics analysis yielded different members of the coatomer complex I, the translation factors ABCE1 and eIF3A, and several RNA binding proteins as cellular proteins with proviral activity for all three viruses. The strongest common hit, ABCE1, an ATP-binding cassette transporter member, was chosen for further study. We found that ABCE1 supports replication of all three viruses, confirming its importance for both virus families. While viral protein kinetics showed that ABCE1 knockdown resulted in a drastic decrease of MeV protein expression, viral mRNA kinetics are not directly affected by a reduction of ABCE1. The impact of ABCE1 on viral and global cellular translation was investigated using both 35S metabolic labelling and non radioactive fluorescent protein labelling. ABCE1 knockdown strongly inhibited the production of MeV proteins, while only modestly affecting global cellular protein synthesis and showed that ABCE1 is specifically required for efficient viral, but not general cellular, protein synthesis, indicating that paramyxoand pneumoviral mRNAs may exploit specific translation mechanisms. In a second approach the efficacy of the small-molecule polymerase inhibitor ERDRP-0519 against MeV was assessed in squirrel monkeys. Animals treated with the drug experienced less severe clinical disease compared to untreated controls, and this effect correlated with the onset of drug treatment. We observed a reduction of levels of PBMC-associated viremia and virus release in the upper airways, illustrating effective inhibition of virus replication by the drug treatment. ERDRP-0519 drug treatment also alleviated MeV-induced immunosuppression. In addition to providing proof-of-concept for the support of MeV eradication efforts by preventing disease and transmission with a small-molecule polymerase inhibitor, this dissertation provides a novel perspective on cellular proteins that impact the replication of MeV, MuV and HRSV and highlights the role of ABCE1 as host factor that is required for efficient paramyxo- and pneumovirus translation.

Download full text files

Export metadata

Author:Kristin Pfeffermann
Place of publication:Frankfurt am Main
Referee:Robert TampéORCiDGND, Veronika A. I. von Messling
Document Type:Doctoral Thesis
Date of Publication (online):2019/10/21
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/10/18
Release Date:2019/10/24
Tag:Paramyxoviruses; Pneumoviruses
Page Number:149
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Licence (German):License LogoDeutsches Urheberrecht