Long non-coding RNA sarrah: Staying young at heart

  • Cardiovascular diseases are a leading cause of morbidity and mortality worldwide. Aging inflicts structural and molecular changes on the heart that oftentimes involve ischemic events, cardiomyocyte apoptosis and cardiac stiffening, which makes it a major risk factor for cardiovascular disease. After being disregarded as transcriptional noise for a long time, long non-coding RNAs have lately emerged as key regulators of many cellular processes in physiology and disease of virtually all tissues and organs, with some of them being differentially regulated during aging. This study identified a long non-coding transcript antisense to the OXCT1 gene locus, Sarrah, to be downregulated in the heart during aging, after acute myocardial infarction and upon heart failure with preserved ejection fraction. Sarrah is expressed in several cardiac cell types with highest levels in cardiomyocytes, where it is predominantly localized in the nucleus. In mouse and human cardiomyocytes, Sarrah levels are reduced upon exposure to hypoxia or treatment with hypoxiamimetic agents in vitro. Sarrah exerts an anti-apoptotic function in mouse and human cardiomyocytes as assessed from caspase activity and annexin V staining. Histological stainings of Sarrah-depleted human engineered heart tissue organoids and Sarrah overexpressing infarcted mouse hearts confirmed its anti-apoptotic function. Sarrah also plays a role in cardiomyocyte contractility, which is substantially impaired upon Sarrah silencing in human engineered heart tissue and neonatal rat cardiomyocytes. Additionally, cardiomyocytal Sarrah stimulates endothelial cell proliferation via paracrine effects as observed after Sarrah overexpression in mouse hearts as well as in co-culture settings with human endothelial cells and Sarrah-depleted or Sarrah overexpressing human cardiomyocytes. A microarray analysis revealed that silencing Sarrah in human cardiomyocytes induced apoptosisrelated gene expression. Mechanistically, Sarrah was predicted to form triplexes in human and mouse with promoters of genes downregulated, but not upregulated after Sarrah knockdown, suggesting that Sarrah interacts with target genes to activate their transcription. This interaction was confirmed in vitro using nucleic acid oligonucleotides containing the sequences of the Sarrah triplex motif and the Sarrah binding site of the exemplary target gene GPC6 of both human and mouse. RNA immunoprecipitation experiments in human cells demonstrated that Sarrah is associated with open chromatin, transcription factor CRIP2, transcriptional co-activator p300 and DNA-RNA hybrid structures that also occur in Sarrah target gene promoters, which indicated that Sarrah activates gene expression by triplex formation and recruitment of protein interaction partners. Deleting the triplex motif of endogenous Sarrah in mouse cardiomyocytes augmented apoptosis, showing that triplex formation is of functional relevance for Sarrah action. Finally, overexpressing Sarrah in an acute myocardial infarction mouse model improved recovery of cardiac contractile function as assessed from ejection fraction, stroke volume, wall motion and wall thickness measured by echocardiography and magnetic resonance imaging. Infarct size was substantially reduced in Sarrah overexpressing mice compared with controls. This in vivo study implies that restoring Sarrah levels in the aged or infarcted heart bears significant therapeutic potential, which can be attributed to the combination of three Sarrah effects: increased cardiomyocytes survival, enhanced contractility of individual cardiomyocytes and paracrine stimulation of endothelial cell proliferation likely contributing to increased angiogenesis and tissue perfusion. In summary, cardiac lncRNA Sarrah is evolutionary conserved with regard to its genomic locus, function and molecular mechanism. Via triplex formation with gene promoters, it is capable to activate a set of target genes that together mediate the anti-apoptotic and pro-contractile function of Sarrah in cardiomyocytes and that confer angiogenic effects to endothelial cells. A therapeutic utilization of Sarrah in the context of myocardial ischemia is conceivable in the future if Sarrah upregulation proves to be beneficial in further studies.

Download full text files

Export metadata

Metadaten
Author:Dorotée Julia Trembinski
URN:urn:nbn:de:hebis:30:3-518587
Place of publication:Frankfurt am Main
Referee:Stefanie DimmelerORCiDGND, Michaela Müller-McNicollORCiD
Advisor:Stefanie Dimmeler
Document Type:Doctoral Thesis
Language:English
Year of Completion:2019
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/11/28
Release Date:2019/12/17
Page Number:168
HeBIS-PPN:456986030
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht