CUL3 KBTBD6/KBTBD7 cooperates with GABARAP proteins to locally restrict TIAM1-RAC1 signaling

  • Ubiquitin and the ubiquitin-like protein ATG8 are covalently attached to their respective targets via a coordinated cascade involving E1 activating, E2 conjugating and E3 ligating enzymes. Whereas ubiquitin is conferred to proteins as mono- and/or polymer(s) to alter their stability, localization and/or activity, the ubiquitin-like modifier (UBL) ATG8 is conjugated to the phospholipid phosphatidylethanolamine (PE). The best understood function of ATG8 is during autophagy where ATG8-PE conjugates are incorporated into both layers of incipient autophagosomes and serve as multipurpose docking sites for autophagosomal cargo receptors as well as regulatory factors (termed adaptors) that drive formation and maturation of autophagosomes. Mammalian cells harbor six ATG8 family members that can be subclassified into the LC3- and GABARAP-family and that can all be lipidated. However, it is currently unclear to what extent these proteins are functionally redundant or fulfil unique roles. Cullin-RING ligase complexes (CRLs) are modular E3 ubiquitin ligases that comprise a RING-finger protein that associates with the ubiquitin-charged E2 enzyme, a substrate recruiting module as well as a cullin scaffold as a linker between RING protein and substrate adaptor. Whereas SCF (SKP1-CUL1-F-box protein) complexes, the most studied CRLs, harbor cullin-1 (CUL1) as scaffold and F-box proteins as substrate binding modules, CUL3-containing CRL complexes employ cullin-3 (CUL3), RING-box protein 1 (RBX1) and BTB proteins as substrate adaptors. Here, the BTB domain serves as binding interface for CUL3 and is usually complemented by an additional protein-protein interaction domain such as MATH or Kelch that mediates binding to the substrate of the E3 ligase complex. Besides ubiquitylation, guanine nucleotide binding is another common way to regulate protein activity and signaling in cells. Here, small Rho GTPases cycle between active and inactive states by binding of the guanine nucleotides GTP or GDP with the help of regulatory proteins. Whereas GTPase-activating proteins (GAP) render RAC1 inactive by facilitating GTP hydrolysis, guanine exchange factors (GEF) such as T-lymphoma invasion and metastasis-inducing protein 1 (TIAM1) activate RAC1 by stimulating the exchange of GDP to GTP. Local control of RAC1 activity is essential to allow a specific cellular response to stimuli such as growth factors or migratory impulses. This study reports an unexpected link between the GABARAP subfamily of mammalian ATG8 proteins, the ubiquitin proteasome system and RAC1 through the ubiquitylation of the RAC1 GEF TIAM1. The Kelch repeat and BTB domain-containing proteins 6 (KBTBD6) and 7 (KBTBD7) were established as heterodimeric substrate adaptors for CUL3. Interestingly, a thorough proteomic analysis revealed a number of putative substrates but, out of 11 substrate candidates tested, only the RAC1 GEF TIAM1 appeared to be influenced by depletion of CUL3KBTBD6/KBTBD7. Binding studies showed that KBTBD7 binds TIAM1 via the Kelch repeats and that this binding was markedly enhanced when CUL3 activation was abolished upon treatment with the neddylation inhibitor MLN4924. Also, total TIAM1 abundance was increased upon CUL3KBTBD6/KBTBD7 depletion and accumulation of TIAM1 upon proteasome inhibition suggested that TIAM1 is degraded via the proteasome. In vivo ubiquitylation assays and denaturing immunoprecipitations as well as mass spectrometrical analysis confirmed that CUL3KBTBD6/KBTBD7 ubiquitylates TIAM1 at two distinct lysines (K1404 and K1420) close to its C-terminus. Previously, KBTBD6 and KBTBD7 were found as interactors of several members of the human ATG8 family of proteins in a proteomic study analyzing the human autophagy network. This association was confirmed in the present work. Furthermore, peptide array technology and mutational analysis revealed that KBTBD6 and KBTBD7 employ a classical ATG8-family interacting motif (AIM; also referred to as LC3-interacting region or LIR) as binding interface. The AIMs of KBTBD6 (W-V-R-V) and KBTBD7 (W-V-Q-V) fulfil the consensus AIM sequence motif (F/W/Y1-X2-X3-I/L/V4) and are preceded by several acidic residues and serines. A series of structural and cell biological experiments revealed a binding preference for the GABARAP subfamily of human ATG8 proteins and most importantly, a requirement of the GABARAP-KBTBD6 and -KBTBD7 interaction for TIAM1 ubiquitylation. The finding that TIAM1 binding to KBTBD6 and KBTBD7 AIM mutants was diminished raised the possibility that GABARAP binding mediates the recruitment of CUL3KBTBD6/KBTBD7 to membranes where TIAM1 is localized. Interestingly, colocalization of KBTBD6, GABARAPL1 and TIAM1 in punctuate structures could be observed. Since only a very small fraction of GABARAPL1 colocalized with LC3B, and colocalization between KBTBD6 and LC3B was not observed, these vesicular structures are most likely distinct from autophagosomes. Furthermore, TIAM1 ubiquitylation was reduced when GABARAP, but not LC3B, was depleted or when lipidation of GABARAP was prevented. Stabilization of TIAM1 upon KBTBD6 and/or KBTBD7 depletion led to elevated TIAM1-dependent RAC1 activity, altered actin morphology with increased cortical actin and loss of vinculin foci. Re-introduction of wild-type KBTBD6 or KBTBD7 but not AIM mutants reverted all these phenotypes. Moreover, depletion of KBTBD6 or KBTBD7 in human breast cancer cells massively increased their invasiveness, whereas TIAM1 knockdown had the opposite outcome. All physiological effects of KBTBD6 and KBTBD7 depletion were inhibited by additional depletion of TIAM1 or RAC1 confirming that the phenotypes observed are indeed mediated by the CUL3KBTBD6/KBTBD7-TIAM1-RAC1 signaling pathway. Intriguingly, KBTBD6 and KBTBD7 were not subject to autophagosomal degradation, thereby establishing a new function for GABARAP proteins beyond autophagosomal degradation in providing a signaling platform for recruitment of the E3 ligase CUL3KBTBD6/KBTBD7 in close proximity to its substrate TIAM1, enabling localized ubiquitylation. Local restricted control of RAC1 activity by ubiquitylation has been described for TIAM1-RAC1 signaling previously. Examples are HECT, UBA and WWE domain-containing protein 1 (HUWE1)-mediated TIAM1 ubiquitylation that occurs predominantly at cell-cell-junctions in response to hepatocyte growth factor stimulation in MDCKII cells or inhibition of RAC1 activity by the RAC1 GAP protein BCR (breakpoint cluster region) at the leading edge of astrocytes through binding to the TIAM1-Par (polarity) complex. SCFBTRC mediates ubiquitylation of TIAM1 in response to mitogens or DNA damage, though it has not been explored whether this regulation is spatially restricted. Thus, this study adds a novel layer of complexity to the spatial regulation of RAC1 signaling by implicating membrane-bound human ATG8 proteins in this process. Also, this study is the first report specifically implicating the GABARAP proteins in cellular signaling events. It will be interesting to explore whether the concept of localized signaling mediated by GABARAPs applies to other substrates of CUL3KBTBD6/KBTBD7 and membranerelated signaling processes in which GABARAP proteins are involved. Controlling RAC1 activity at GABARAP-decorated membranes might also be important for trafficking events or autophagy since it was described that RAC1 has an inhibitory function on autophagy. Therefore, spatial restricted ubiquitylation of TIAM1 resulting in specific deactivation of RAC1 could promote the autophagic process when locally needed. Although the catalytic mTOR inhibitor Torin1 and the lysosomal H+ ATPase inhibitor BafilomycinA1 promoted TIAM1 ubiquitylation by increasing the pool of membrane-conjugated GABARAP, but other signals that stimulate GABARAP-KBTBD6/KBTBD7 association and subsequent TIAM1 ubiquitylation are to be identified. Besides, determining the KBTBD6/KBTBD7 binding site in TIAM1 or uncovering a deubiquitylating enzyme (DUB) that locally counteracts the ubiquitylation of TIAM1 will enable a better comprehension of the complete localized signaling cascade.

Download full text files

  • HeideMarikaGenau_Dissertation.pdf
    eng
  • HeideMarikaGenau_summary.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Heide Marika Genau
URN:urn:nbn:de:hebis:30:3-415354
Referee:Heinz D. OsiewaczORCiDGND, Christian Behrends
Advisor:Christian Behrends
Document Type:Doctoral Thesis
Language:English
Year of Completion:2015
Year of first Publication:2015
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2015/12/17
Release Date:2020/01/27
GND Keyword:Proteine; Katabolismus
Page Number:155
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
Note:
Im Titel ist "KBTBD6/KBTBD7" hochgestellt
HeBIS-PPN:460234293
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG