Beyond the bucket: development of a global gradient-based groundwater modeling software – its evaluation and integration into a global hydrological model

  • Groundwater is the largest source of accessible freshwater with its dynamics having significantly changed due to human withdrawals, and being projected to continue to as a result of climate change. The pumping of groundwater has led to lowered water tables, decreased base flow, and depletion. Global hydrological models (GHMs) are used to simulate the global freshwater cycle, assessing impacts of changes in climate and human freshwater use. Currently, groundwater is commonly represented by a bucket-like linear storage component in these models. Bucket models, however, cannot provide information on the location of the groundwater table. Due to this limitation, they can only simulate groundwater discharge to surface water bodies but not recharge from surface water to groundwater and calculate no lateral and vertical groundwater flow whatsoever among grid cells. For instance this may lead to an underestimation of groundwater resources in semiarid areas, where groundwater is often replenished by surface water. In order to overcome these limitations it is necessary to replace the linear groundwater model in GHMs with a hydraulic head gradient-based groundwater flow model This thesis presents the newly developed global groundwater model G3M and its coupling to the GHM WaterGAP spanning over 70,000 lines of newly developed code. Development and validation of the modeling software are discussed along with numerical challenges. Based on the newly developed software, a global natural equilibrium groundwater model is presented showing better agreements with observations than previous models. Groundwater discharge to rivers is found to be the most dominant flow component globally, compared to flows to other surface water bodies and lateral flows. Furthermore, first global maps of the distribution of gaining and losing surface water bodies are displayed. For the purpose of determining the uncertainty in model outcomes a sensitivity study is conducted with an innovative approach through applying a global sensitivity analysis for a computationally complex model. First global maps of spatially distributed parameter sensitivities are presented. The results at hand indicate that globally simulated hydraulic heads are equally sensitive to hydraulic conductivity, groundwater recharge and surface water body elevation, even though parameter sensitivities do vary regionally. A high resolution model of New Zealand is developed to further understand the involved uncertainties connected to the spatial resolution of the global model. This thesis finds that a new understanding is necessary how these models can be evaluated and that a simple increase in spatial resolution is not improving the model performance when compared to observations. Alongside the assessment of the natural equilibrium, the concept of a fully coupled transient model as integrated storage component replacing the former model in the hydrological model WaterGAP is discussed. First results reveal that the model shows reasonable response to seasonal variability although it contains persistent head trends leading to global overestimates of water table depth due to an incomplete coupling. Nonetheless, WaterGAP-G3M is already able to show plausible long term storage trends for areas that are known to be affected by groundwater depletion. In comparison with two established regional models in the Central Valley the coupled model shows a highly promising simulation of storage declines.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Robert ReineckeORCiDGND
URN:urn:nbn:de:hebis:30:3-531419
Parent Title (German):Frankfurt Hydrology Paper ; 19
Title Additional (German):Von linearen Speichermodellen zu gradientenbasierter Grundwassermodellierung: Die Entwicklung eines globalen Grundwassermodells und seine Integration in ein globales hydrologisches Modell
Series (Serial Number):Frankfurt Hydrology Paper (19)
Publisher:Institute of Physical Geography, Goethe University
Place of publication:Frankfurt am Main
Referee:Petra DöllORCiDGND, Laura Foglia, Thorsten Wagener
Advisor:Petra Döll, Laura Foglia
Document Type:Doctoral Thesis
Language:English
Year of Completion:2020
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2019/12/20
Release Date:2020/03/05
Tag:global; groundwater; hydrology
Page Number:242
HeBIS-PPN:460964909
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht