Single-electron transport in focused electron beam induced deposition (FEBID)-based nanostructures

  • Mit steigender Komplexität von integrierten Schaltungen im Nanometer-Maÿstab werden immer innovativere Techniken nötig, um diese zu fabrizieren. Dies erfordert einen starken Fokus auf die Kontrolle der Fabrikation akkurater Strukturen und der Materialreinheit, und dies im Zusammenhang mit einer skalierbaren Produktion. In diesem Kontext hat Elektronenstrahlinduzierte Abscheidung (engl. Focused Electron Beam Induced Deposition, FEBID) eine wachsende Aufmerksamkeit im Bereich der Nanostrukturierung gewonnen. Der FEBID-Prozess basiert auf der lokalen Abscheidung von Material auf einem Substrat. Das Deponat entsteht durch die Spaltung von Präkursor-Molekülen durch die Interaktion mit einem Elektronenstrahl entsteht. Als Beispiel sei hier der Präkursor Me3PtCpMe angeführt. Das auf dem Substrat abgelagerte Material besteht aus wenigen Nanometer großen Kristalliten aus Platin, welche in einer Matrix aus amorphem Kohlenstoff eingebettet sind. Die Pt-C FEBID Ablagerungen sind nano-granulare Metalle, deren elektrische Transporteigenschaften die Folge des Zusammenspiels von diffusivem Transport von Ladungen innerhalb der Pt-Kristalliten und temperaturabhängigen Tunneleffekten sind. Das größte Interesse an diesen Materialien liegt an der Möglichkeit, Strukturen für technische Anwendungen im Nanometerbereich herstellen zu können. In dieser Arbeit wurden Anwendungen, die auf Einzelelektroneneffekten beruhen, ausgewählt, um die FEBID basierte Probenpräparation zu testen. Um Einzelelektronentransport zu ermöglichen, der auf dem Tunneln einzelner Elektronen basiert, müssen alle Parameter wie Grösse und Abstände der Strukturen genauestens definiert sein. Im Rahmen dieser Arbeit wurden Einzelelektronenbausteine entwickelt, die auf zwei unterscheidlichen Anwendungen des Pt-C FEBID-Prozesses basieren. Die beiden Anwendungen sind: 1) Arrays von Gold-Nanopartikeln (Au-NP), welche mittels Pt-Strukturen kontaktiert wurden, die mit FEBID präpariert und anschlieÿend aufgereinigt wurden; 2) Einzelelektronentransistoren (engl. Single-Electron Transistors, SET), deren Inseln aus elektronennachbestrahlten Pt-C FEBID Deponate bestehen. Die elektrischen Eigenschaften der präparierten Nanostrukturen wurden charakterisiert und mit der erzielten Auflösung und Materialqualität in Relation gesetzt. Es wurden Optimierungen an der Präparationsmethode durchgeführt, welche direkt die Leitfähigkeit des Pt-C FEBID-Materials erhöhen. Dies kann durch die Änderung der Karbonmatrix oder die Erhöhung des metallischen Gehalts der Struktur geschehen. In dieser Arbeit wurde eine katalytische Aufreinigungsmethode von Pt-C FEBID Strukturen für zwei Anwendungen genutzt: zum Einen wurden die aufgereinigten Strukturen als Keimschichten für die nachfolgende ortsgenaue Atomlagenabscheidung (engl. Area-Selective Atomic Layer Deposition, AS-ALD) von Pt-Dünnschichten genutzt. Zum Anderen wurde diese Technik dafür genutzt, Metallbrücken zwischen den bereits durch Auftropfen zufällig auf dem Substrat aufgebrachten NP-Gruppen und den zuvor aufgebrachten UV-Lithographie (UVL) präparierten Cr-Au Kontakten zu erzeugen. Eine NP-Gruppe ist ein periodisches, granulares Array von Partikeln, welche uniform in Größe und Form sind und einen unterschiedlichen Grad von Ordnung inne haben. Durch die Art des Aufbringens kann die Anordnung der Nanopartikel durch Lösen und Erzeugen der Verbindungen beeinflusst werden. Diese Systeme zeigen ein Verhalten wie Tunnelkontakte mit Coulombblockade und eine Verteilung der Schwellspannung. Die Ergebnisse der elektrischen Messungen bestätigen den Einzelelektronentransport durch die Nanopartikel in einem typischen Elektronentransportregime mit schwacher Kopplung. Trotz dieser Ergebnisse war die Anwendung dieser Technik für die SET Nanostrukturierung nicht erfolgreich. Die Ursache konnte zurückgeführt werden auf das Vorhandensein von Pt-Partikeln in der Nähe der Kontakte zu den Au-NP-Arrays. Die Pt-Partikel sind durch den FEBID Fertigungsprozess in der Nähe der vorgegebenen Struktur entstanden. Aus diesem Grund wurde das FEBID Co-Deponat in der folgenden SET-Nanofabrikation entfernt. Ein SET basiert auf einer Nano-Insel, welche durch Tunnelkontakte mit Source- und Drain-Elektroden verbunden ist. Darüber hinaus besteht eine kapazitive Verbindung zu einer oder mehreren Gate-Elektrode(n). Innerhalb der Insel gibt es eine feste Anzahl von Elektronen. In dieser Arbeit wurden die Source-, Drain- und Gate-Kontakte durch Ätzen mittels eines fokussierten Gallium-Strahls erzeugt, was Abstände von 50nm ermöglichte, wohingegen die SET Insel mit Pt-C FEBID-Material erzeugt wurde. Die Leitfähigkeit der Insel aus Pt-C wurde mit anschließender Elektronenbestrahlung erhöht. Als letzter Präparationsmethode wurde ein neueartiges Argon-Ätzverfahren genutzt, um die durch FEBID erzeugten Co-Ablagerungen in der direkten Umgebung der Insel zu entfernen. Durch die Elektronennachbestrhalung kann die Kopplung der einzelnen metallischen Kristalliten angepasst werden. Die Auswirkungen unterschiedlicher starker Tunnelkontakte auf die elektronischen Eigenschaften der Insel und die daraus resultierende Performanz des SETs wurden in dieser Arbeit beobachtet ...

Download full text files

Export metadata

Metadaten
Author:Giorgia Di PrimaORCiDGND
URN:urn:nbn:de:hebis:30:3-686799
DOI:https://doi.org/10.21248/gups.68679
Place of publication:Frankfurt am Main
Referee:Michael HuthORCiDGND, Jens MüllerORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/06/20
Year of first Publication:2022
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/06/23
Release Date:2022/07/26
Page Number:226
HeBIS-PPN:497531534
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht