Energiezustände in einem Halbleiterübergitter in gekreuzten elektrischen und magnetischen Feldern

  • In dieser Arbeit werden Energiezustände in einem GaAs/Al0:3Ga0:7As-Halbleiterübergitter in gekreuzten elektrischen und magnetischen Feldern untersucht. Dabei liegt das elektrische Feld F in Wachstumsrichtung an, während das Magnetfeld B senkrecht dazu in der Ebene der Schichten orientiert ist. Es werden die experimentellen Methoden der Elektroreflexions- und Transmissionsspektroskopie angewendet. Die experimentellen Ergebnisse werden sowohl mit theoretischen Berechnungen verglichen als auch mit zeitaufgelösten Daten in Bezug gesetzt. Sowohl in den Elektroreflexions- als auch in den Transmissionsspektren lassen sich je nach relativem Wert des elektrischen und magnetischen Feldes B=F = x drei verschiedene Bereiche unterscheiden. Für kleines x sind Wannier-Stark-Übergänge sichtbar, die sich mit steigendem B-Feld zu höheren Energien verschieben. Die auffälligste Beobachtung ist das Verschwinden der Wannier-Stark-Zustände mit steigendem Magnetfeld: Bei mittlerem x, wenn die magnetische Energie ~!C die Größenordnung der elektrischen Energie ~!B erreicht, beobachtet man einen nahezu strukturlosen Übergangsbereich. Für größere Magnetfeldstärken lassen sich wieder Übergänge identifizieren, die Landau-Charakter besitzen. Die Exzistenz eines strukturlosen Übergangsbereichs unterscheidet die Geometrie gekreuzter Felder wesentlich von der Konfiguration parallel gerichteter Felder (F- und B-Feld in Wachstumsrichtung [5]). Der Übergangsbereich wurde bereits zuvor beobachtet [65], eine Erklärung seines Ursprungs stand jedoch noch aus. Letztere gewinnen wir aus der Zusammenarbeit mit der Theorie: Auf der Grundlage der Modellrechnungen von S. Glutsch und S. Stepanow aus Jena lässt sich feststellen, dass jeder Wannier-Stark-Zustand in Anwesenheit eines Magnetfeldes in Landau-Zustände aufspaltet. Mit steigendem Magnetfeld verschieben sich diese, wie auch die Wannier-Stark-Zustände, zu höheren Energien, so dass sich eine wachsende Anzahl von Zuständen energetisch annähert. Die Wechselwirkung von Zuständen führt zu vermiedenen Überkreuzungen und damit zu einer Verteilung der Oszillatorstärke, so dass die Stärke jedes einzelnen Zustands abnimmt und einzelne Linien nicht mehr aufzulösen sind. Interessanterweise spielt die Verkürzung der Lebenszeit der involvierten Zustände (homogene Linienverbreiterung) eine untergeordnete Rolle bei der Entstehung des Übergangsbereichs. Auch hinsichtlich anderer Aspekte ist die Übereinstimmung von Theorie und Experiment zufriedenstellend: Die auf Grundlage der Einteilchen-Theorie vorhergesagte energetische Verschiebung der Wannier-Stark- und Landau-Niveaus mit steigendem Magnetfeld kann experimentell mittels Elektroreflexionsmessungen verifiziert werden. Die experimentellen Absorptionsspektren lassen sich direkt mit den theoretischen Absorptionsspektren vergleichen und zeigen die vorhergesagten Energieübergänge. Darüberhinaus sind Fano-Resonanzen als asymmmetrische Linienprofile zu beobachten. Das Zusammenspiel von Theorie und Experiment stellt sich demnach in dieser Arbeit als sehr fruchtbar heraus: Die vorgestellten Experimente leisten der Theorie einen Dienst, indem sie wesentliche theoretische Vorhersagen experimentell verifizieren. Andererseits gewinnt das Verständnis der experimentellen Beobachtungen erst durch theoretische Erkenntnisse sein Fundament. Während der Vergleich von Theorie und Experiment weitgehend abgeschlossen ist [21], wirft der Vergleich der spektral aufgelösten Daten mit zeitaufgelösten Messergebnissen noch ungelöste Fragen auf. Die Dynamik optisch angeregter Wellenpakete lässt sich analog zu den Elektroreflexions- und Absorptionsspektren in ein elektrisch-dominiertes Regime für kleines B=F = x und ein magnetisch-dominiertes Regime für großes x unterteilen. Die beiden Bereiche sind durch einen mittleren x-Wert separiert, bei dem keine kohärenten Oszillationen zu beobachten sind. Dieser Übergang findet entgegen der Erwartung nicht bei dem gleichen x-Wert statt wie in spektral aufgelösten Daten. In der vorliegenden Arbeit wird dieser Befund präzisiert: Absorptionsspektren werden mit TEOS-Spektren (englisch: transmittive electrooptic sampling), Elektroreflexionsdaten mit REOS-Spektren (englisch: reflective electro-optic sampling) verglichen. Sehr deutlich ist die Diskrepanz zu erkennen: In spektral aufgelösten Daten liegt der Übergangsbereich bei größeren x-Werten als in zeitaufgelösten Daten, so dass im spektralen Übergangsbereich wieder langlebige Oszillationen in den zeitaufgelösten Messungen zu beobachten sind. Umgekehrt sind in den spektral aufgelösten Messungen noch deutliche Strukturen erkennbar, wenn am dynamischen Übergang zwischen elektrisch- und magnetisch-dominiertem Regime Oszillationen ausbleiben. Die Experimente dieser Arbeit motivieren demnach die weitere Beschäftigung mit folgenden Problemen: Die Diskrepanz zwischen spektral- und zeitaufgelösten Daten hinsichtlich des Übergangsbereichs muss in Zukunft theoretisch behandelt werden. Es besteht bereits ein Angebot von M. M. Dignam, sich des Problems anzunehmen. Damit verbunden ist die Frage nach der genauen Bedingung für den Übergangsbereich in den spektralen Daten, da die bisherige Bedingung zu grob zu sein scheint. Die Untersuchung von Energiezuständen in Halbleiterübergittern wird auch in Zukunft eine Rolle spielen. Nachdem die Geometrien von parallel und senkrecht orientiertem B und F eingehend behandelt wurden, stellt nun der Fall arbiträrer Feldanordnung eine neue Aufgabe dar. Wenn das Magnetfeld mit dem elektrischen Feld einen arbiträren Winkel einschließt, wird in zeitaufgelösten Messungen eine Kopplung von Magneto-Bloch- und Zyklotron-Oszillationen beobachtet, die sich in einem kohärenten Quasi-DC-Strom und verstärkter Feldabschirmung ausdrückt [58]. Es wäre interessant zu untersuchen, mit welchen spektralen Eigenschaften diese dynamischen Befunde korrespondieren. Hierzu bieten sich die Methoden der Elektroreflexions- und Transmissionsspektroskopie an, die sich in dieser Arbeit als geeignet erwiesen haben.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Claudia Blöser
URN:urn:nbn:de:hebis:30-19282
URL:http://www.pi.physik.uni-frankfurt.de/femto/arbeiten.html
Advisor:Beate Hummel
Document Type:diplomthesis
Language:German
Year of Completion:2005
Year of first Publication:2005
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Release Date:2005/10/17
Last Page:117
HeBIS-PPN:185754376
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht