Refine
Year of publication
Document Type
- Article (20)
Language
- English (20)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
- breast cancer (6)
- Aurora A (2)
- BCL6 (2)
- Breast cancer (2)
- adipose-derived mesenchymal stem cells (2)
- differentiation (2)
- neoadjuvant therapy (2)
- primary cilium (2)
- trophoblast (2)
- Adipose-derived mesenchymal stem cells (1)
Institute
- Medizin (20)
Background: Current prognostic gene signatures for breast cancer mainly reflect proliferation status and have limited value in triple-negative (TNBC) cancers. The identification of prognostic signatures from TNBC cohorts was limited in the past due to small sample sizes.
Methodology/Principal Findings: We assembled all currently publically available TNBC gene expression datasets generated on Affymetrix gene chips. Inter-laboratory variation was minimized by filtering methods for both samples and genes. Supervised analysis was performed to identify prognostic signatures from 394 cases which were subsequently tested on an independent validation cohort (n = 261 cases).
Conclusions/Significance: Using two distinct false discovery rate thresholds, 25% and <3.5%, a larger (n = 264 probesets) and a smaller (n = 26 probesets) prognostic gene sets were identified and used as prognostic predictors. Most of these genes were positively associated with poor prognosis and correlated to metagenes for inflammation and angiogenesis. No correlation to other previously published prognostic signatures (recurrence score, genomic grade index, 70-gene signature, wound response signature, 7-gene immune response module, stroma derived prognostic predictor, and a medullary like signature) was observed. In multivariate analyses in the validation cohort the two signatures showed hazard ratios of 4.03 (95% confidence interval [CI] 1.71–9.48; P = 0.001) and 4.08 (95% CI 1.79–9.28; P = 0.001), respectively. The 10-year event-free survival was 70% for the good risk and 20% for the high risk group. The 26-gene signatures had modest predictive value (AUC = 0.588) to predict response to neoadjuvant chemotherapy, however, the combination of a B-cell metagene with the prognostic signatures increased its response predictive value. We identified a 264-gene prognostic signature for TNBC which is unrelated to previously known prognostic signatures.
Background: Obesity impairs a variety of cell types including adipose-derived mesenchymal stem cells (ASCs). ASCs are indispensable for tissue homeostasis/repair, immunomodulation, and cell renewal. It has been demonstrated that obese ASCs are defective in differentiation, motility, immunomodulation, and replication. We have recently reported that some of these defects are linked to impaired primary cilia, which are unable to properly convey and coordinate a variety of signaling pathways. We hypothesized that the rescue of the primary cilium in obese ASCs would restore their functional properties.
Methods: Obese ASCs derived from subcutaneous and visceral adipose tissues were treated with a specific inhibitor against Aurora A or with an inhibitor against extracellular signal-regulated kinase 1/2 (Erk1/2). Multiple molecular and cellular assays were performed to analyze the altered functionalities and their involved pathways.
Results: The treatment with low doses of these inhibitors extended the length of the primary cilium, restored the invasion and migration potential, and improved the differentiation capacity of obese ASCs. Associated with enhanced differentiation ability, the cells displayed an increased expression of self-renewal/stemness-related genes like SOX2, OCT4, and NANOG, mediated by reduced active glycogen synthase kinase 3 β (GSK3β).
Conclusion: This work describes a novel phenomenon whereby the primary cilium of obese ASCs is rescuable by the low-dose inhibition of Aurora A or Erk1/2, restoring functional ASCs with increased stemness. These cells might be able to improve tissue homeostasis in obese patients and thereby ameliorate obesity-associated diseases. Additionally, these functionally restored obese ASCs could be useful for novel autologous mesenchymal stem cell-based therapies.
Introduction: Lymphocyte infiltration (LI) is often seen in breast cancer but its importance remains controversial. A positive correlation of human epidermal growth factor receptor 2 (HER2) amplification and LI has been described, which was associated with a more favorable outcome. However, specific lymphocytes might also promote tumor progression by shifting the cytokine milieu in the tumor.
Methods: Affymetrix HG-U133A microarray data of 1,781 primary breast cancer samples from 12 datasets were included. The correlation of immune system-related metagenes with different immune cells, clinical parameters, and survival was analyzed.
Results: A large cluster of nearly 600 genes with functions in immune cells was consistently obtained in all datasets. Seven robust metagenes from this cluster can act as surrogate markers for the amount of different immune cell types in the breast cancer sample. An IgG metagene as a marker for B cells had no significant prognostic value. In contrast, a strong positive prognostic value for the T-cell surrogate marker (lymphocyte-specific kinase (LCK) metagene) was observed among all estrogen receptor (ER)-negative tumors and those ER-positive tumors with a HER2 overexpression. Moreover ER-negative tumors with high expression of both IgG and LCK metagenes seem to respond better to neoadjuvant chemotherapy.
Conclusions: Precise definitions of the specific subtypes of immune cells in the tumor can be accomplished from microarray data. These surrogate markers define subgroups of tumors with different prognosis. Importantly, all known prognostic gene signatures uniformly assign poor prognosis to all ER-negative tumors. In contrast, the LCK metagene actually separates the ER-negative group into better or worse prognosis.
Background The proto-oncogene pituitary tumor-transforming gene (PTTG) has been shown to be abundantly overexpressed in a large variety of neoplasms likely promoting neo-vascularization and tumor invasiveness. In this study, we investigated a potential role for PTTG mRNA expression as a marker to evaluate the future clinical outcome of patients diagnosed with primary cancer of the head and neck. Methods Tumor samples derived from primary tumors of 89 patients suffering from a squamous cell carcinoma were analyzed for PTTG mRNA-expression and compared to corresponding unaffected tissue. Expression levels were correlated to standard clinico-pathological parameters based on a five year observation period. Results In almost all 89 tumor samples PTTG was found to be overexpressed (median fold increase: 2.1) when compared to the unaffected tissue specimens derived from the same patient. The nodal stage correlated with PTTG transcript levels with significant differences between pN0 (median expression: 1.32) and pN+ (median expression: 2.12; P = 0.016). In patients who developed a tumor recurrence we detected a significantly higher PTTG expression in primary tumors (median expression: 2.63) when compared to patients who did not develop a tumor recurrence (median expression: 1.29; P = 0.009). Since the median expression of PTTG in patients with tumor stage T1/2N0M0 that received surgery alone without tumor recurrence was 0.94 versus 3.82 in patients suffering from a tumor recurrence (P = 0.006), PTTG expression might provide a feasible mean of predicting tumor recurrence. Conclusion Elevated PTTG transcript levels might be used as a prognostic biomarker for future clinical outcome (i.e. recurrence) in primary squamous cell carcinomas of the head and neck, especially in early stages of tumor development.
Introduction: Current prognostic gene expression profiles for breast cancer mainly reflect proliferation status and are most useful in ER-positive cancers. Triple negative breast cancers (TNBC) are clinically heterogeneous and prognostic markers and biology-based therapies are needed to better treat this disease.
Methods: We assembled Affymetrix gene expression data for 579 TNBC and performed unsupervised analysis to define metagenes that distinguish molecular subsets within TNBC. We used n = 394 cases for discovery and n = 185 cases for validation. Sixteen metagenes emerged that identified basal-like, apocrine and claudin-low molecular subtypes, or reflected various non-neoplastic cell populations, including immune cells, blood, adipocytes, stroma, angiogenesis and inflammation within the cancer. The expressions of these metagenes were correlated with survival and multivariate analysis was performed, including routine clinical and pathological variables.
Results: Seventy-three percent of TNBC displayed basal-like molecular subtype that correlated with high histological grade and younger age. Survival of basal-like TNBC was not different from non basal-like TNBC. High expression of immune cell metagenes was associated with good and high expression of inflammation and angiogenesis-related metagenes were associated with poor prognosis. A ratio of high B-cell and low IL-8 metagenes identified 32% of TNBC with good prognosis (hazard ratio (HR) 0.37, 95% CI 0.22 to 0.61; P < 0.001) and was the only significant predictor in multivariate analysis including routine clinicopathological variables.
Conclusions: We describe a ratio of high B-cell presence and low IL-8 activity as a powerful new prognostic marker for TNBC. Inhibition of the IL-8 pathway also represents an attractive novel therapeutic target for this disease.
Simple Summary: Currently, it is unclear which kind of axillary staging surgery breast cancer patients with lymph node metastasis should receive after neoadjuvant chemotherapy. For decades, these patients have been treated with a full axillary lymph node dissection, even if they converted to clinical node negativity. However, the removal of a large number of lymph nodes during the procedure can increase arm morbidity and impact quality of life. Therefore, several studies investigated less radical surgical strategies in this setting, such as sentinel lymph node biopsy or targeted axillary dissection, i.e., removal of a previously marked node combined with sentinel node removal. In this review, we summarize current evidence on the different surgical techniques and compare national and international recommendations. We show that many questions regarding oncological safety of different surgery types and the optimal marking technique remain unanswered and present the multinational prospective cohort study AXSANA that will address these open issues.
Abstract: In the last two decades, surgical methods for axillary staging in breast cancer patients have become less extensive, and full axillary lymph node dissection (ALND) is confined to selected patients. In initially node-positive patients undergoing neoadjuvant chemotherapy, however, the optimal management remains unclear. Current guidelines vary widely, endorsing different strategies. We performed a literature review on axillary staging strategies and their place in international recommendations. This overview defines knowledge gaps associated with specific procedures, summarizes currently ongoing clinical trials that address these unsolved issues, and provides the rationale for further research. While some guidelines have already implemented surgical de-escalation, replacing ALND with, e.g., sentinel lymph node biopsy (SLNB) or targeted axillary dissection (TAD) in cN+ patients converting to clinical node negativity, others recommend ALND. Numerous techniques are in use for tagging lymph node metastasis, but many questions regarding the marking technique, i.e., the optimal time for marker placement and the number of marked nodes, remain unanswered. The optimal number of SLNs to be excised also remains a matter of debate. Data on oncological safety and quality of life following different staging procedures are lacking. These results provide the rationale for the multinational prospective cohort study AXSANA initiated by EUBREAST, which started enrollment in June 2020 and aims at recruiting 3000 patients in 20 countries (NCT04373655; Funded by AGO-B, Claudia von Schilling Foundation for Breast Cancer Research, AWOgyn, EndoMag, Mammotome, and MeritMedical).
Background: The incidence of central nervous system (CNS) metastases in breast cancer patients is rising and has become a major clinical challenge. Only few data are published concerning risk factors for the development of CNS metastases as a first site of metastatic disease in breast cancer patients. Moreover, the incidence of CNS metastases after modern neoadjuvant treatment is not clear.
Methods: We analyzed clinical factors associated with the occurrence of CNS metastases as the first site of metastatic disease in breast cancer patients after neoadjuvant treatment in the trials GeparQuinto and GeparSixto (n = 3160) where patients received targeted treatment in addition to taxane and anthracycline-based chemotherapy.
Results: After a median follow-up of 61 months, 108 (3%) of a total of 3160 patients developed CNS metastases as the first site of recurrence and 411 (13%) patients had metastatic disease outside the CNS. Thirty-six patients (1%) developed both CNS metastases and other distant metastases as the first site of metastatic disease. Regarding subtypes of the primary tumor, 1% of luminal A-like (11/954), 2% of luminal B-like (7/381), 4% of HER2-positive (34/809), and 6% of triple-negative patients (56/1008) developed CNS metastases as the first site of metastatic disease.
In multivariate analysis, risk factors for the development of CNS metastases were larger tumor size (cT3–4; HR 1.63, 95% CI 1.08–2.46, p = 0.021), node-positive disease (HR 2.57, 95% CI 1.64–4.04, p < 0.001), no pCR after neoadjuvant chemotherapy (HR 2.29, 95% CI 1.32–3.97, p = 0.003), and HER2-positive (HR 3.80, 95% CI 1.89–7.64, p < 0.001) or triple-negative subtype (HR 6.38, 95% CI 3.28–12.44, p < 0.001).
Conclusions: Especially patients with HER2-positive and triple-negative tumors are at risk of developing CNS metastases despite effective systemic treatment. A better understanding of the underlying mechanisms is required in order to develop potential preventive strategies.
Background: Remodeling of extracellular matrix through collagen degradation is a crucial step in the metastatic cascade. The aim of this study was to evaluate the potential clinical relevance of the serum collagen degradation markers (CDM) C3M and C4M during neoadjuvant chemotherapy for breast cancer.
Methods: Patients from the GeparQuinto phase 3 trial with untreated HER2-positive operable or locally advanced breast cancer were enrolled between 7 November 2007, and 9 July 2010, and randomly assigned to receive neoadjuvant treatment with EC/docetaxel with either trastuzumab or lapatinib. Blood samples were collected at baseline, after four cycles of chemotherapy and at surgery. Cutoff values were determined using validated cutoff finder software (C3M: Low ≤9.00 ng/mL, high >9.00 ng/mL, C4M: Low ≤40.91 ng/mL, high >40.91 ng/mL).
Results: 157 patients were included in this analysis. At baseline, 11.7% and 14.8% of patients had high C3M and C4M serum levels, respectively. No correlation was observed between CDM and classical clinical-pathological factors. Patients with high levels of CDM were significantly more likely to achieve a pathological complete response (pCR, defined as ypT0 ypN0) than patients with low levels (C3M: 66.7% vs. 25.7%, p = 0.002; C4M: 52.7% vs. 26.6%, p = 0.031). Median levels of both markers were lower at the time of surgery than at baseline. In the multivariate analysis including clinical-pathological factors and C3M levels at baseline and changes in C3M levels between baseline and after four cycles of therapy, only C3M levels at baseline (p = 0.035, OR 4.469, 95%-CI 1.115–17.919) independently predicted pCR. In a similar model including clinical-pathological factors and C4M, only C4M levels at baseline (p = 0.028, OR 6.203, 95%-CI 1.220–31.546) and tumor size (p = 0.035, OR 4.900, 95%-CI 1.122–21.393) were independent predictors of pCR. High C3M levels at baseline did not correlate with survival in the entire cohort but were associated with worse disease-free survival (DFS; p = 0.029, 5-year DFS 40.0% vs. 74.9%) and overall survival (OS; p = 0.020, 5-year OS 60.0% vs. 88.3%) in the subgroup of patients randomized to lapatinib. In the trastuzumab arm, C3M did not correlate with survival. In the entire patient cohort, high levels of C4M at baseline were significantly associated with shorter DFS (p = 0.001, 5-year DFS 53.1% vs. 81.6%) but not with OS. When treatment arms were considered separately, the association with DFS was still significant (p = 0.014, 5-year DFS 44.4% vs. 77.0% in the lapatinib arm; p = 0.023, 5-year DFS 62.5% vs. 86.2% in the trastuzumab arm).
Conclusions: Collagen degradation markers are associated with response to neoadjuvant therapy and seem to play a role in breast cancer.
Background: Breast cancer is the leading cause of cancer-related deaths in women, demanding new treatment options. With the advent of immune checkpoint blockade, immunotherapy emerged as a treatment option. In addition to lymphocytes, tumor-associated macrophages exert a significant, albeit controversial, impact on tumor development. Pro-inflammatory macrophages are thought to hinder, whereas anti-inflammatory macrophages promote tumor growth. However, molecular markers to identify prognostic macrophage populations remain elusive. Methods: We isolated two macrophage subsets, from 48 primary human breast tumors, distinguished by the expression of CD206. Their transcriptomes were analyzed via RNA-Seq, and potential prognostic macrophage markers were validated by PhenOptics in tissue microarrays of patients with invasive breast cancer. Results: Normal human breast tissue contained mainly CD206+ macrophages, while increased relative amounts of CD206− macrophages were observed in tumors. The presence of CD206+ macrophages correlated with a pronounced lymphocyte infiltrate and subsets of CD206+ macrophages, expressing SERPINH1 and collagen 1, or MORC4, were unexpectedly associated with improved survival of breast cancer patients. In contrast, MHCIIhi CD206− macrophages were linked with a poor survival prognosis. Conclusion: Our data highlight the heterogeneity of tumor-infiltrating macrophages and suggest the use of multiple phenotypic markers to predict the impact of macrophage subpopulations on cancer prognosis. We identified novel macrophage markers that correlate with the survival of patients with invasive mammary carcinoma.
The proliferative stimulus of the epidermal growth factor (EGF) in human epithelial cells is mediated by its binding to the external domain of the EGF receptor (EGF-R). The purpose of this study was to investigate whether growth arrest of tumors treated with anti-EGFR MAb (EMD 55900) was dependent on EGF-R expression and distinct histopathologic criteria of those neoplasms. Nine different adenocarcinomas, squamous cell carcinomas and two neoplastic epithelial cell lines (A431 and Detroit 562), which were characterized by high EGF-R expression, were xenotransplanted onto NMRI-nu/nu mice and treated with an anti-EGF-R antibody (EMD 55900). Results revealed that EGF-R expression and distinct histopathologic growth patterns play an important role for the therapeutic effect of the EGF-R antibody treatment. Tumors with high epithelial cellularity and little connective tissue responded to EMD 55900 treatment to a greater degree of growth reduction than tumors with lower cellularity. These results will be helpful for evaluation of patients who would benefit from tumor therapy with anti-EGF-R antibody.