Refine
Year of publication
Document Type
- Article (11)
- Preprint (8)
- Conference Proceeding (1)
- Working Paper (1)
Language
- English (21)
Has Fulltext
- yes (21)
Is part of the Bibliography
- no (21)
Keywords
- Kollisionen schwerer Ionen (4)
- heavy ion collisions (3)
- QMD (2)
- Abhängigkeit von der Dichte (1)
- BEVALAC (1)
- EOS (1)
- IQMD Modell (1)
- IQMD model (1)
- OMD (1)
- Quantendynamik (1)
Institute
The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Dilepton spectra are calculated with and without shifting the rho pole. Except for S+Au collisions our calculations reproduce the CERES data.
The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.
In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.
If density isomers exist they can be detected by measuring the excitation function of subthreshold kaon production. When the system reaches the density where the density isomer has influence on the equation of state (which depends on the beam energy and on the optical potential), we observe a jump in the cross section of the kaons whereas other observables change little. Above threshold Λ¯’s or p¯’s may be used to continue the search. This is the result of microscopic Boltzman-Uehling-Uhlenbeck calculations.
We present a new type of flow analysis, based on a particle-pair correlation function, in which there is no need for an event-by-event determination of the reaction plane. Consequently, the need to correct for dispersion in an estimated reaction plane does not arise. Our method also offers the option to avoid any influence from particle misidentification. Using this method, streamer chamber data for collisions of Ar+KCl and Ar+BaI2 at 1.2 GeV/nucleon are compared with predictions of a nuclear transport model.
Azimuthal correlations of pions are studied with the quantum molecular dynamics model. Pions are preferentially emitted perpendicular to the reaction plane. Our analysis shows that this anisotropy is dominated by pion absorption on the spectator matter in the reaction plane. Pions emitted perpendicular to the reaction plane undergo less rescattering than those emitted in the reaction plane and might therefore be more sensitive to the early hot and dense reaction phase.
Accurate impact parameter determination in a heavy-ion collision is crucial for almost all further analysis. We investigate the capabilities of an artificial neural network in that respect. First results show that the neural network is capable of improving the accuracy of the impact parameter determination based on observables such as the flow angle, the average directed inplane transverse momentum and the difference between transverse and longitudinal momenta. However, further investigations are necessary to discover the full potential of the neural network approach.
Nuclear transport models are important tools for interpretation of many heavy-ion experiments and are essential in efforts to probe the nuclear equation of state. In order to fulfill these roles, the model predictions should at least agree with observed single-particle-inclusive momentum spectra; however, this agreement has recently been questioned. The present work compares the Vlasov-Uehling-Uhlenbeck model to data for mass-symmetric systems ranging from 12C+12C to 139La+139La, and we find good agreement within experimental uncertainties at 0.4A and 0.8A GeV. For currently available data, these uncertainties are too large to permit effective nucleon-nucleon scattering cross sections in the nuclear medium to be extracted at a useful level of precision.
Inclusive neutron spectra were measured at 0°, 4°, 8°, 15°, 30°, and 42° from Nb-Nb and Au-Au collisions at 800 MeV/nucleon. A peak that originates from neutron evaporation from the projectile appears in the spectra at angles out to 8°. The shapes and magnitudes of the spectra are compared with those calculated from models of nucleus-nucleus collisions. The differential cross sections for Au-Au collisions are about four times those for Nb-Nb collisions. The predictions of the Vlasov-Uehling-Uhlenbeck (VUU) and QMD theories agree with the angular distributions of the differential cross sections except at small angles; the VUU prediction overestimates the angular distributions from a few degrees to about 20°, whereas the QMD prediction underestimates the angular distributions below 8°. The Firestreak model overestimates the angular distribution for Nb-Nb collisions and underestimates it for Au-Au collisions. Also, the VUU and QMD models agree with the measured double-differential cross sections in more angular and energy regions than the Firestreak and intranuclear cascade models; however, none of the models can account for the peaks at small angles (θ≤15°).
We study the transition from fusion-fission phenomena at about 20 MeV/nucleon multifragmentation at 100–200 MeV/nucleon in the reaction 16O+80Br employing the quantum molecular dynamics model. The time evolution of the density and mass distribution, the charged-particle multiplicity, and spectra as well as angular distributions of light particles are investigated. The results exhibit the transition of the disassembly mechanism, but no sharp change is found. The results are in good agreement with recently measured 4-Pi data.