Refine
Document Type
- Preprint (3)
- Article (1)
- Conference Proceeding (1)
Language
- English (5)
Has Fulltext
- yes (5)
Is part of the Bibliography
- no (5)
Keywords
- Kollisionen schwerer Ionen (2)
- QGP (2)
- Quark-Gluon-Plasma (2)
- heavy ion collisions (2)
- Monte Carlo Modell (1)
- Monte Carlo model (1)
- URQMD (1)
- Ultrarelativistic Quantum Molecular Dynamics (1)
- quark-gluon plasma (1)
- quark-gluon-plasma (1)
Institute
In this paper, the concepts of microscopic transport theory are introduced and the features and shortcomings of the most commonly used ansatzes are discussed. In particular, the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model is described in great detail. Based on the same principles as QMD and RQMD, it incorporates a vastly extended collision term with full baryon-antibaryon symmetry, 55 baryon and 32 meson species. Isospin is explicitly treated for all hadrons. The range of applicability stretches from E lab < 100$ MeV/nucleon up to E lab> 200$ GeV/nucleon, allowing for a consistent calculation of excitation functions from the intermediate energy domain up to ultrarelativistic energies. The main physics topics under discussion are stopping, particle production and collective flow.
The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Dilepton spectra are calculated with and without shifting the rho pole. Except for S+Au collisions our calculations reproduce the CERES data.
The behavior of hadronic matter at high baryon densities is studied within Ultrarelativistic Quantum Molecular Dynamics (URQMD). Baryonic stopping is observed for Au+Au collisions from SIS up to SPS energies. The excitation function of flow shows strong sensitivities to the underlying equation of state (EOS), allowing for systematic studies of the EOS. Effects of a density dependent pole of the rho-meson propagator on dilepton spectra are studied for different systems and centralities at CERN energies.
The microscopic phasespace approach URQMD is used to investigate the stopping power and particle production in heavy systems at SPS and RHIC energies. We find no gap in the baryon rapidity distribution even at RHIC. For CERN energies URQMD shows a pile up of baryons and a supression of multi-nucleon clusters at midrapidity.
The Monte Carlo parton string model for multiparticle production in hadron-hadron, hadron-nucleus, and nucleus-nucleus collisions at high energies is described. An adequate choice of the parameters in the model gives the possibility of recovering the main results of the dual parton model, with the advantage of treating both hadron and nuclear interactions on the same footing, reducing them to interactions between partons. Also the possibility of considering both soft and hard parton interactions is introduced.