### Refine

#### Year of publication

#### Document Type

- Article (186)
- Preprint (155)
- Conference Proceeding (4)
- Report (1)
- Working Paper (1)

#### Has Fulltext

- yes (347)

#### Is part of the Bibliography

- no (347)

#### Keywords

- Kollisionen schwerer Ionen (40)
- heavy ion collisions (33)
- equation of state (11)
- Quark-Gluon-Plasma (10)
- Zustandsgleichung (9)
- quark-gluon plasma (9)
- Hadron (8)
- Quark Gluon Plasma (8)
- heavy ion collision (8)
- QGP (7)

#### Institute

The extension of the Periodic System into hitherto unexplored domains - anti- matter and hypermatter - is discussed. Starting from an analysis of hyperon and single hypernuclear properties we investigate the structure of multi-hyperon objects (MEMOs) using an extended relativistic meson field theory. These are contrasted with multi-strange quark states (strangelets). Their production mechanism is stud- ied for relativistic collisions of heavy ions from present day experiments at AGS and SPS to future opportunities at RHIC and LHC. It is pointed out that abso- lutely stable hypermatter is unlikely to be produced in heavy ion collisions. New attention should be focused on short lived metastable hyperclusters ( / 10 10s) and on intensity interferometry of multi-strange-baryon correlations.

Two-center level diagrams for the neutron orbitals in the scattering of 16O on 25Mg and of 17O on 24Mg are calculated by using a deformed potential for 24,25Mg. Possible consequences of the nuclear Landau-Zener mechanism, namely the promotion of nucleons at avoided level crossings, and of the rotational coupling between crossing molecular single-particle orbitals are studied for inelastic excitation and neutron transfer. The important excitation and transfer processes, which are enhanced by the promotion process and the rotational coupling, are presented. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, asymmetric two center shell model, single particle excitation, deformed nuclei.

We compare a proximity-type potential for two interacting nuclei with the double-folding method. Both spherical and deformed systems are considered. Special "orientation windows" are found for two deformed nuclei giving rise to nuclear cohesion. If the same nucleon-nucleon interaction is utilized, the proximity and the double-folding potentials agree fairly well for a spherical + deformed system. However, deviations are found in the case of two deformed nuclei.

For the scattering of 28Si on 28Si coupled channel calculations of the elastic scattering and inelastic single excitation of the first 2+ state of 28Si are carried out. The real coupling potentials are calculated in the framework of an adiabatic model. The resulting cross sections reveal structures in agreement with the observed ones and support their interpretation as nuclear molecular resonances.

Different collective deformation coordinates for neutrons and protons are introduced to allow for both stretching and γ transitions consistent with experiments. The rotational actinide nuclei 234-238U and 232Th are successfully analyzed in this model. NUCLEAR STRUCTURE 232Th, 234-238U calculated B (E2) values, collective model.

On the basis of the two-center shell model a theory is developed for the excitation of loosely bound nucleons in heavy ion collisions. These nucleons move in the two-center shell model potential generated by all the nucleons and are described by molecular wave functions. The model is applied to calculate the cross sections for the elastic and inelastic 13C-13C scattering. The cross sections show intermediate structures caused by the excitation of quasibound resonances in the molecular nucleus-nucleus potential. NUCLEAR REACTIONS 13C(13C,13C) molecular wave functions, dynamical two-center shell model, quasimolecular resonances, radial and Coriolis coupling, coupled channel calculations for σ(θ).

Quasimolecular resonance structures in the 12C-12C system are studied in the framework of the coupled channel formalism in the energy range Ec.m.=5-14 MeV. The influence of the coupling of the first excited 2+ state in 12C on the resonance structures is investigated by choosing various types of coupling potentials. The intermediate structures in the reflection and transition coefficients and cross sections can be interpreted with the double resonance mechanism. NUCLEAR REACTIONS 12C(12C, 12C), quasimolecular states, coupling potentials, coupled channel calculations for σ(θ).

The theory of nucleon transfer in heavy ion reactions is formulated on the basis of the molecular particlecore model for a system consisting of two cores and one extracore nucleon. The extracore nucleon is described by the molecular wave functions of the asymmetric two-center shell model. The cores, which are assumed to be collectively excitable, are treated with vibrator-rotator models. Potentials for shape polarization are contained in the asymmetric two-center shell model and the interaction between the cores. The excitation and transfer of the extracore nucleon is induced by the radial and rotational couplings. The coupled channel equations, which include the recoil effects in first approximation, are derived in a form suitable for numerical calculations of cross sections. NUCLEAR REACTIONS Heavy ion scattering, theory of nucleon transfer, molecular wave functions, two-center shell model, collective and single-particle excitation.

The unified model and the collective giant-dipole-resonance model are unified. The resulting energy spectrum and the transition probabilities are derived. A new approximate selection rule involving the symmetry of the γ vibrations is established. It is verified that the main observable features in the photon-absorption cross section are not influenced by the odd particle, despite the considerably richer spectrum of states as compared to even-even nuclei.

A method is proposed by which the eigenstates and the eigenvalues of the S matrix, i.e., the eigenchannels, can be directly computed from the nuclear problem, for example, from the shell model. The calculation of all cross sections, viz., partial and total cross sections, is then exceedingly simple. The characteristics of the eigenchannels are described and the relation with other reaction theories is briefly discussed.