24.10.Lx Monte Carlo simulations (including hadron and parton cascades and string breaking models)
Refine
Year of publication
Document Type
- Preprint (6)
- Article (3)
- Conference Proceeding (1)
- Master's Thesis (1)
Language
- English (11)
Has Fulltext
- yes (11)
Is part of the Bibliography
- no (11)
Keywords
- (n (1)
- Beryllium-7 (1)
- FRANZ (1)
- HBT interferometry (1)
- HBT puzzle (1)
- Hadron potentials (1)
- Heavy ion collisions (1)
- Lithium-7 (1)
- Monte-Carlo model for relativistic heavy ion collisions (1)
- Monte-Carlo-Simulation (1)
Institute
The nuclear stopping, the elliptic flow, and the HBT interferometry are calculated by the UrQMD transport model, in which potentials for “pre-formed” particles (string fragments) from color fluxtube fragmentation as well as for confined particles are considered. This description provides stronger pressure at the early stage and describes these observables better than the default cascade mode (where the “pre-formed” particles from string fragmentation are treated to be free-streaming). It should be stressed that the inclusion of potential interactions pushes down the calculated HBT radius RO and pulls up the RS so that the HBT time-related puzzle disappears throughout the energies from AGS, SPS, to RHIC.
Based on the microscopic transport model UrQMD in which hadronic and string degrees of freedom are employed, the HBT parameters in the longitudinal co-moving system are investigated for charged pion and kaon, and Λ sources in heavy ion collisions (HICs) at SPS and RHIC energies. In the Cascade mode, RO and the RL at high SPS and RHIC energies do not follow the mT-scaling, however, after considering a soft equation of state with momentum dependence (SM-EoS) for formed baryons and a density-dependent Skyrme-like potential for “pre-formed” particles, the HBT radii of pions and kaons and even those of Λs with large transverse momenta follow the mT-scaling function R=3/mT fairly well.
We calculate the antibaryon-to-baryon ratios, p̄/p,Λ̄/Λ,Ξ/Ξ, and Ω/Ω for Au+Au collisions at RHIC (sNN=200 GeV). The effects of strong color fields associated with an enhanced strangeness and diquark production probability and with an effective decrease of formation times are investigated. Antibaryon-to-baryon ratios increase with the color field strength. The ratios also increase with the strangeness content |S|. The netbaryon number at midrapidity considerably increases with the color field strength while the netproton number remains roughly the same. This shows that the enhanced baryon transport involves a conversion into the hyperon sector (hyperonization) which can be observed in the (Λ−Λ̄)/(p−p̄) ratio.
As a part of this thesis, a Monte Carlo-based code has been developed capable of simulating the transition of proton beam properties to neutron beam properties as it occurs in the Li-7(p, n)Be-7 reaction. It is able to reproduce not only the angle-integrated energy distributions but it is also capable of predicting the angle-dependent neutron spectra as measured at Forschungszentrum Karlsruhe (Karlsruhe, Germany) and Physikalisch-Technische Bundesanstalt (Braunschweig, Germany). Since the code retains all three spatial dimensions as well as all three velocity dimensions, it provides very detailed information on the neutron beam. The resulting data can aid in many different aspects, for example it can be used in shielding construction, or for lithium target design. In this work, the code is used to predict the neutron beam properties expected at the Frankfurt Neutron Source at Stern-Gerlach-Zentrum (FRANZ) facility. For different proton beam energies, the neutron distribution in x/p_x, y/p_y, and z/p_z is shown as well as a Mollweide projection, which illustrates the kinematic collimation effect that limits the neutron cone opening angle to less than 180 degree.
The rapidity dependence of the single- and double- neutron to proton ratios of nucleon emission from isospin-asymmetric but mass-symmetric reactions Zr+Ru and Ru+Zr at energy range 100 ~ 800 A MeV and impact parameter range 0 ~ 8 fm is investigated. The reaction system with isospin-asymmetry and mass-symmetry has the advantage of simultaneously showing up the dependence on the symmetry energy and the degree of the isospin equilibrium. We find that the beam energy- and the impact parameter dependence of the slope parameter of the double neutron to proton ratio (F_D) as function of rapidity are quite sensitive to the density dependence of symmetry energy, especially at energies E_b ~ 400 A MeV and reduced impact parameters around 0.5. Here the symmetry energy effect on the F_D is enhanced, as compared to the single neutron to proton ratio. The degree of the equilibrium with respect to isospin (isospin mixing) in terms of the F_D is addressed and its dependence on the symmetry energy is also discussed.
We investigate the sensitivity of several observables to the density dependence of the symmetry potential within the microscopic transport model UrQMD (ultrarelativistic quantum molecular dynamics model). The same systems are used to probe the symmetry potential at both low and high densities. The influence of the symmetry potentials on the yields of pi-, pi+, the pi-/pi+ ratio, the n/p ratio of free nucleons and the t/3He ratio are studied for neutron-rich heavy ion collisions (208Pb+208Pb, 132Sn+124Sn, 96Zr+96Zr) at E_b=0.4A GeV. We find that these multiple probes provides comprehensive information on the density dependence of the symmetry potential.
The equilibration of hot and dense nuclear matter produced in the central cell of central Au+Au collisions at RHIC (sqrt s = 200 A GeV) energies is studied within a microscopic transport model. The pressure in the cell becomes isotropic at t approx 5 fm/c after beginning of the collision. Within the next 15 fm/c the expansion of matter in the cell proceeds almost isentropically with the entropy per baryon ratio S/A approx 150, and the equation of state in the (P,epsilon) plane has a very simple form, P=0.15 epsilon. Comparison with the statistical model of an ideal hadron gas indicates that the time t approx 20 fm/c may be too short to reach the fully equilibrated state. Particularly, the creation of long-lived resonance-rich matter in the cell decelerates the relaxation to chemical equilibrium. This resonance-abundant state can be detected experimentally after the thermal freeze-out of particles.
Local equilibrium in heavy ion collisions. Microscopic model versus statistical model analysis
(1999)
The assumption of local equilibrium in relativistic heavy ion collisions at energies from 10.7 AGeV (AGS) up to 160 AGeV (SPS) is checked in the microscopic transport model. Dynamical calculations performed for a central cell in the reaction are compared to the predictions of the thermal statistical model. We find that kinetic, thermal and chemical equilibration of the expanding hadronic matter are nearly approached late in central collisions at AGS energy for t >= 10 fm/c in a central cell. At these times the equation of state may be approximated by a simple dependence P ~= (0.12-0.15) epsilon. Increasing deviations of the yields and the energy spectra of hadrons from statistical model values are observed for increasing energy, 40 AGeV and 160 AGeV. These violations of local equilibrium indicate that a fully equilibrated state is not reached, not even in the central cell of heavy ion collisions at energies above 10 AGeV. The origin of these findings is traced to the multiparticle decays of strings and many-body decays of resonances.
Thermodynamical variables and their time evolution are studied for central relativistic heavy ion collisions from 10.7 to 160 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits drastic deviations from equilibrium during the early high density phase of the collision. Local thermal and chemical equilibration of the hadronic matter seems to be established only at later stages of the quasi-isentropic expansion in the central reaction cell with volume 125 fm 3. Baryon energy spectra in this cell are reproduced by Boltzmann distributions at all collision energies for t > 10 fm/c with a unique rapidly dropping temperature. At these times the equation of state has a simple form: P = (0.12 - 0.15) Epsilon. At SPS energies the strong deviation from chemical equilibrium is found for mesons, especially for pions, even at the late stage of the reaction. The final enhancement of pions is supported by experimental data.
Local kinetic and chemical equilibration is studied for Au+Au collisions at 10.7 AGeV in the microscopic Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). The UrQMD model exhibits dramatic deviations from equilibrium during the high density phase of the collision. Thermal and chemical equilibration of the hadronic matter seems to be established in the later stages during a quasiisentropic expansion, observed in the central reaction cell with volume 125 fm3. For t > 10 fm/c the hadron energy spectra in the cell are nicely reproduced by Boltzmann distributions with a common rapidly dropping temperature. Hadron yields change drastically and at the late expansion stage follow closely those of an ideal gas statistical model. The equation of state seems to be simple at late times: P = 0.12 Epsilon. The time evolution of other thermodynamical variables in the cell is also presented.