Understanding the biosynthesis of fabclavines in entomopathogenic bacteria

  • The compound class of the fabclavines was described as secondary or specialized metabolites (SM) for Xenorhabdus budapestensis and X. szentirmaii. Their corresponding structure was elucidated by NMR and further derivatives could be identified in both strains. Biochemically, fabclavines are hybrid SMs derived from two non-ribosomal-peptide-synthetases (NRPS), one type I polyketide-synthase (PKS) and polyunsaturated fatty acid (PUFA) synthases. In detail, a hexapeptide is connected via partially reduced polyketide units to an unsual polyamine. Structurally, they are related to the (pre-)zeamines, described for Serratia plymuthica and Dickeya zeae. Fabclavines exhibit a broad-spectrum bioactivity against a variety of different organisms like Grampositive and Gram-negative bacteria, fungi, protozoa but also against eukaryotic celllines. In this work, the fabclavine biosynthesis was elucidated and assigned to two independently working assembly lines. The NRPS-PKS-pathway is initiated by the first NRPS FclI via generation of a tetrapeptide, which is elongated by the second NRPS FclJ, leading to a hexapeptide. Alternatively, FclJ can also act as direct start of the biosynthesis, resulting in the final formation of shortened fabclavine derivatives with a diinstead of a hexapeptide. In both cases, the peptide moiety is transferred to the iterative type I PKS FclK, leading to an elongation with partially reduced polyketide units. The resulting NRPS-PKS-intermediate is still enzyme-bound. The PUFA-homologues FclC, FclD and FclE in combination with FclF, FclG and FclH belong to the polyamine-forming pathway. Briefly, repeating decarboxylative Claisen thioester condensation reactions of acyl-coenzym A building blocks lead to the generation of an acyl chain in a PKS- or fatty acid biosynthesis-like manner. The corresponding β-keto-groups are either completely reduced or transaminated in a specific and repetitive way, resulting in the concatenation of so-called amine-units. The final β-keto-group is reduced to a hydroxy-group and the intermediate is reductively released by the thioester reductase FclG. A subsequent transamination step leads to the final polyamine. The NRPS-PKS- as well as the polyamine-pathway are connected by FclL. This condensation domain-like protein catalyzes the condensation of the polyamine with the NRPS-PKS-part, which results in the release of the final fabclavine. The results are described in detail in the first publication (first author). Fabclavine biosynthesis gene cluster (BGC) are widely spread among the genus Xenorhabdus and Photorhabdus. In Xenorhabdus strains a high degree of conservation regarding the BGC synteny as well as the identity of single proteins can be observed. However, Photorhabdus strains harbor only the PUFA-homologues. While in Photorhabdus no product could be detected, our analysis revealed that the Xenorhabdus strains produce a large chemical diversity of different derivatives. Briefly, the general backbone of the fabclavines is conserved and only four chemical moieties are variable: The second and last amino acids of the NRPS-part, the number of incorporated polyketide units as well as the number of amine units in the polyamine. In combination with the elucidated biosynthesis, these variables could be assigned to single biosynthesis components as diversity mechanisms. Together with the 10 already described derivatives, a total of 32 derivatives could be detected. Interestingly, except for taxonomic closely related strains, all analyzed strains produce their own set of derivatives. Finally, we could confirm that the fabclavines are the major bioactive compound class in the analyzed strains under laboratory conditions. The results are described in detail in the second publication (first author). Together with our collaboration partner Prof. Selcuk Hazir a potent bioactivity against Enterococcus faecalis, which is associated with endodontic infections, could be contributed to X. cabanillasii. Here, we could confirm that this bioactivity can be assigned to the fabclavines. The results are described in detail in the third publication(co-author). Among the genus Xenorhabdus, X. bovienii represents an exception as its NRPS and PKS genes of the fabclavine BGC are missing or truncated, resulting in the exclusive production of polyamines. Furthermore, its PUFA-homologue FclC harbors an additional dehydratase (DH) domain. Upon extensive analysis a yet unknown deoxy-polyamine was identified and assigned to this additional domain. Finally, the DH domain was transferred into other polyamine pathways. Regardless of an in cis or in trans integration, the chimeric pathways produced deoxy-derivatives of its naturally occurring polyamines, suggesting that this represents another diversification mechanism. The results are described in detail in the attached manuscript (first author).

Download full text files

Export metadata

Author:Sebastian Leonhard Wenski
Place of publication:Frankfurt am Main
Referee:Helge Björn BodeORCiDGND, Eugen ProschakORCiDGND
Advisor:Helge Björn Bode
Document Type:Doctoral Thesis
Year of Completion:2020
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/11/19
Release Date:2021/04/14
Tag:Fabclavine; Natural products; Xenorhabdus
Page Number:255
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht