Nematophilic bacteria as a source of novel macrocyclised antimicrobial non-ribosomal peptides

  • A solution to ineffective clinical antimicrobials is the discovery of new ones from under-explored sources such as macrocyclic non-ribosomal peptides (NRP) from nematophilic bacteria. In this dissertation an antimicrobial discovery process –from soil sample to inhibitory peptide– is demonstrated through investigations on six nematophilic bacteria: Xenorhabdus griffiniae XN45, X. griffiniae VH1, Xenorhabdus sp. nov. BG5, Xenorhabdus sp. nov. BMMCB, X. ishibashii and Photorhabdus temperata. To demonstrate the first step of bacterium isolation and species delineation, endosymbionts were isolated from Steinernema sp. strains BG5 and VH1 that were isolated directly from soil samples in Western Kenya. After genome sequencing and assembly of novel Xenorhabdus isolates VH1 and BG5, species delineation was done via three overall genome relatedness indices. VH1 was identified as X. griffiniae VH1, BG5 as Xenorhabdus sp. nov. BG5 and X. griffiniae BMMCB was emended to Xenorhabdus sp. nov. BMMCB. The nematode host of X. griffiniae XN45, Steinernema sp. scarpo was highlighted as a putative novel species. To demonstrate the second step of genome mining and macrocyclic non-ribosomal peptide structure elucidation, chemosynthesis and biosynthesis, the non-ribosomal peptide whose production is encoded by the ishA-B genes in X. ishibashii was investigated. Through a combination of refactoring the ishA-B operon by a promoter exchange mechanism, isotope labelling experiments, high resolution tandem mass spectrometry analysis, bioinformatic protein domain analysis and chemoinformatic comparisons of actual to hypothetical mass spectrometry spectra, the structures of Ishipeptides were elucidated and confirmed by chemical synthesis. Ishipeptide A was a branch cyclic depsidodecapeptide macrocyclised via an ester bond between serine and the terminal glutamate. It chemosynthesis route was via a late stage macrolactamation and linearised Ishipeptide B was synthesised via solid phase iterative synthesis. Ishipeptides were not N-terminally acylated despite being biosynthesised from the IshA protein that had a C-starter domain. It was highlighted that more than restoration of the histidine active site of this domain is required to restore N-terminal acylation activity. To demonstrate the final step of determination of antimicrobial activity, minimum inhibitory concentrations of Ishipeptides and Photoditritide from Photorhabdus temperata against fungi and bacteria were determined. None were antifungal while only the macrocyclic compounds were inhibitory, with Ishipeptide A inhibitory to Gram-positive bacteria at 37 µM. The cationic Photoditritide, a cyclic hexapeptide macrocyclised via a lactam bond between homoarginine and tryptophan, was 12 times more inhibitory (3.0 µM), even more effective than a current clinical compound, Ampicillin (4.2 µM). For both, macrocyclisation was hypothesised to contribute to antimicrobial activity. Ultimately, this dissertation demonstrated not only nematophilic bacteria as a source of novel macrocyclic antimicrobial non-ribosomal peptides but also a process of antimicrobial discovery–from soil sample to inhibitory peptide– from these useful bacteria genera. This is significant for the fight against antimicrobial resistance.

Download full text files

Export metadata

Author:Ryan Musumba Awori
ISBN:ISBN 978-3-00-069216-1
Referee:Helge Björn BodeORCiDGND, Jörg SoppaORCiD
Document Type:Doctoral Thesis
Date of Publication (online):2021/05/25
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/03/09
Release Date:2021/05/25
Page Number:172
Aktualisierte Fassung. Ursprüngliche Version unter
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht