Toxicity of plastic consumer products: a biological, chemical and social-ecological analysis

  • Plastics contain a complex mixture of chemicals including polymers, additives, starting substances and side-products of processing. These plastic chemicals are prone to leach into the packaged goods, in the case of food contact materials (FCMs), or into the natural environment, in the case of plastic debris. Thus, plastics represent an exposure source of chemicals for humans and wildlife alike. While it is widely known that individual plastic chemicals, such as bisphenol A and phthalates, are hazardous, little is known on the overall chemical composition and toxicity of plastics. When fragmented into smaller particles, referred to as microplastics (< 5 mm), the plastic itself can be ingested by many species. It is well established that microplastic ingestion can have negative consequences for a wide range of organisms including invertebrates, but the contribution of plastic chemicals to the toxicity of microplastics is unclear. Given the above, the present thesis aimed at a comprehensive toxicological, ecotoxicological and chemical characterization of everyday plastics. For a comparative evaluation, 77 plastic products were selected covering 16 material types (e.g., polyethylene) made from petroleum or renewable feedstocks. These products included biodegradable products, FCMs and non-FCMs, as well as raw materials and final products, respectively. In the first two studies, the chemical mixtures contained in the 77 products were extracted with methanol and extracts were analyzed in a set of four in vitro bioassays and by non-target high-resolution gas or liquid chromatography mass spectrometry. Since an exposure only occurs if chemicals actually leach under realistic conditions, in a third study migration experiments with water were conducted for 24 out of the 77 products. The aqueous migrates were assessed in the same way as the methanolic extracts. In addition, the freshwater invertebrate Daphnia magna was exposed chronically to microplastics made of polyvinylchloride (PVC), polyurethane (PUR) and polylactic acid (PLA) to investigate the contribution of chemicals in microplastic toxicity, in a fourth study. The experimental findings demonstrate that a wide variety of chemicals is present in plastics. A single plastic product can contain up to several thousand chemical features, most of which unique to that product and at the same time unknown. The results also indicate that the majority of these chemical mixtures are toxic in vitro. Accordingly, 65% of the plastic extracts induced baseline toxicity and 42% an oxidative stress response, while 25% had an antiandrogenic and 6% an estrogenic activity. This implies that chemicals causing unspecific toxicity are more prevalent in plastics than such with endocrine effects. These chemicals can also leach from plastics under realistic conditions. Between 17 and 8936 chemical features were detected in a single migrate sample and all 24 tested migrates induced in vitro toxicity. This means that humans and wildlife can actually be exposed to toxic plastic chemicals under realistic conditions. Generally, each product has its individual toxicological and chemical fingerprint. Thus, neither material type, feedstock, biodegradability nor the food contact suitability of a product can serve as a predictor for the toxicity, the chemical composition or complexity of a product. Likewise, this means that bio-based and biodegradable materials are not superior to their petroleum-based counterparts from a toxicological perspective despite being promoted as sustainable alternatives to conventional plastics. Moreover, the present thesis demonstrates that plastic chemicals can be the main driver for microplastic toxicity. Irregular microplastics made of PVC, PUR and PLA adversely affected life-history traits of D. magna in a polymer type- and endpoint-dependent manner at concentrations between 100 and 500 mg L-1 and with a higher efficiency than natural kaolin particles. While the toxicity of PVC was triggered by the chemicals used in the material, the effects of PUR and PLA were induced by the physical properties of the particle. In addition, in the fifth study, results and observations made during this thesis were integrated inter- and transdisciplinarily with the perspectives of a social scientist and a product manufacturer. This elucidated that knowledge on plastic ingredients is often concealed, is lacking or not applicable in practice. These intransparencies hinder the safety evaluation of plastic products as well as the choice and sale of the least toxic packaging material. Overall, the present thesis highlights that the chemical safety of plastics and their bio-based and biodegradable alternatives is currently not ensured. Thus, chemicals require more consideration in the toxicity and risk assessment of plastics and microplastics. Product-specific and complex chemical compositions, including unknown compounds, pose a challenge here. Two essential steps towards non-toxic products are to increase transparency along the product life cycle and to reduce the chemical complexity of plastics by communication and regulation. The results of the present thesis indicate that products exist which do not contain toxic chemicals. These can serve to direct the design of safer plastics. Since toxicity and chemical complexity seem to increase with processing, the integration of toxicity testing during the production steps would further support the safe and sustainable production and use of plastic products.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Lisa ZimmermannORCiDGND
Place of publication:Frankfurt am Main
Referee:Carolin VölkerORCiDGND, Jörg OehlmannORCiDGND
Advisor:Carolin Völker
Document Type:Doctoral Thesis
Date of Publication (online):2021/08/19
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/08/06
Release Date:2021/09/20
Page Number:180
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
3 Sozialwissenschaften / 33 Wirtschaft / 333 Boden- und Energiewirtschaft / 333.7 Natürliche Ressourcen, Energie und Umwelt
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht