• search hit 1 of 212
Back to Result List

Entwicklung und Anwendung von permanentmagnetischen Solenoiden und Quadrupolen zur Strahlfokussierung

  • Magnetische Quadrupole und Solenoide sind ein elementarer Bestandteil einer Beschleunigeranlage und begrenzen die transversale Ausdehnung eines Teilchenstrahls durch eine Reflexion der Teilchen in Richtung der Beschleunigerachse. Die konventionelle Bauweise als Elektromagnet besteht aus einem Eisenjoch welches mit Spulen umwickelt ist. In dieser Arbeit werden diese Magnetstrukturen auf Basis von Permanentmagneten designt und hinsichtlich ihrer Qualität zum Strahltransport optimiert, sowie Feldmessungen an permanentmagnetischen Quadrupolen durchgeführt. Diese wurden mit 3D-gedruckten Halterungen aus Kunststoff gefertigt, was eine Vielzahl von Formvariationen ermöglicht. Darauf aufbauend wurde ein im Vakuum befindlicher Aufbau entwickelt, mit welchem die Strahlenvelope im inneren eines permanentmagnetischen Quadrupol Tripletts diagnostiziert werden kann. Dies greift auf ein am Institut für angewandte Physik entwickeltes System zur nicht-invasiven Strahldiagnose mithilfe von Raspberry Pi Einplatinencomputern und Kameras in starken Magnetfeldern zurück. Die in dieser Arbeit vorgestellte Konfiguration eines PMQ’s ist eine Weiterentwicklung des am CERN im Linac4, einem Alvarez-Driftröhrenbeschleuniger zur Beschleunigung von H– , verwendeten Designs. Bei diesem sind je acht quaderförmige Permanentmagnete aus Samarium Cobalt (SmCo) in die Driftröhren des Beschleunigers integriert. Darauf aufbauend wurden die geometrischen Designparameter hinsichtlich ihres Einflusses auf die Qualität des Magnetfelds untersucht. In einem magnetischen Quadrupol zur Strahlfokussierung wird dies durch einen linearen Anstieg des Magnetfeldes von Quadrupolachse zu Polflächen charakterisiert. Das Design wurde im Zuge dessen zur Verwendung von industriellen Standardgeometrien von Quadermagneten und der Erhöhung der magnetischen Flussdichte erweitert. Dazu wurde untersucht wie sich das Hinzufügen von zusätzlichen Magneten auswirkt und ob eine bessere Feldqualität durch andere Magnetformen erreicht wird. Die Kombination mehrerer PMQ in geringem Abstand (<10 mm) führt abhängig von der Geometrie der PMQ-Singlets zu einer erheblichen Verschlechterung der Feldlinearität, was eine Erhöhung des besetzten Phasenraumvolumens der Teilchen nach sich zieht. Am Beispiel von PMQ-Tripletts werden die zu beachtenden Designparameter analysiert und Lösungsansätze vorgestellt. Die auftretenden Effekte werden anhand von Strahldynamiksimulation veranschaulicht. Für eine Anwendung der vorgestellten Designs wurde eine Magnethülle mit einer Wabenstruktur zur Aufnahme der Einzelmagnete entwickelt. Diese besteht aus zwei Halbschalen, welche jeweils den Kompletteinschluss aller Magnete garantiert und eine einfache Montage um ein Strahlrohr ermöglicht. Diese wurden in der Institutswerkstatt aus Kunststoff via 3D-Druck gefertigt. Aufgrund der höheren erreichbaren Magnetisierung wurden Neodym-Eisen-Bor-Magnete (Nd2F14B, Br =1,36 T) für den Bau der entwickelten Strukturen verwendet. Für eine Magnetfeldmessung zur Bestätigung der magnetostatischen Simulationen und einer Bewertung der Druckqualität wurde eine motorisierte xyz-Stage zur Bewegung einer Hallsonde aufgebaut. Die Messungen zeigen eine gute Zentrierung des Magnetfeldes, sodass PMQ mit einer Kunststoffhalterung eine schnelle und billige Möglichkeit sind, kurzfristig eine Quadrupol-Konfiguration aufzubauen. Die Kosten belaufen sich für einen einzelnen PMQ je nach Länge auf 50€ bis 100€. Basierend auf der PMQ-Struktur wurde ein PMQ-Triplett in ein Vakuum versetzt und mit Raspberry Pi Kameras im Zwischenraum der Singlets ausgestattet. Dies ermöglichte die Aufnahme der Strahlenvelope innerhalb des Tripletts anhand der durch einen Heliumstrahl induzierten Fluoreszenz und erste Erkenntnisse für notwendige Weiterentwicklungen wurden gesammelt. Auf den genauen technischen Aufbau wird im abschließenden Kapitel der Arbeit detailliert eingegangen. In der einfachsten Form wird ein PM-Solenoid anhand eines einzelnen axial magnetisierten Hohlzylinders realisiert und erzeugt näherungsweise die Feldverteilung einer Zylinderspule. Durch die radialen Magnetfeldkomponenten an den Rändern des Solenoiden erhalten Teilchen eine tangentiale Geschwindigkeitskomponente und führen eine Gyrationsbewegung entlang der Solenoidachse aus. Diese reduziert den Strahlradius und die Teilchen behalten eine Geschwindigkeitskomponente, welche zur Solenoidachse zeigt. Für eine Maximierung dieser Fokussierung muss das Magnetfeld auf die Zylinderachse konzentriert werden. Insbesondere bei einer Verlängerung des Hohlzylinders wird die Kopplung der Polflächen über das Innenvolumen abgeschwächt. Aufgrund dessen wurde ein Design bestehend aus drei Hohlzylindersegmenten entwickelt. Dieses setzt sich aus zwei radial und einem axial magnetisierten Hohlzylinder zusammen und erhöht die mittlere magnetische Flussdichte für ausgewählte Geometrien um einen Faktor zwei im Vergleich zu einem einzelnen Hohlzylinder gleicher Geometrie. Dies ist gleichzusetzen mit einer Vervierfachung der Fokussierstärke, welche quadratisch mit der mittleren magnetischen Flussdichte skaliert. Die Strahldynamischen Konsequenzen werden anhand von Simulationen mit generierten Magnetfeldverteilungen erläutert. Für eine kostengünstige Bauweise wurde eine Design basierend auf quaderförmigen Magneten entwickelt.

Download full text files

Export metadata

Metadaten
Author:Jan Dominik KaiserGND
URN:urn:nbn:de:hebis:30:3-747461
DOI:https://doi.org/10.21248/gups.74746
Place of publication:Frankfurt am Main
Referee:Ulrich RatzingerORCiD, Holger PodlechORCiDGND
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2023/07/20
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2023/07/18
Release Date:2023/07/20
Page Number:164
HeBIS-PPN:509832059
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht