• Treffer 3 von 6
Zurück zur Trefferliste

Magnetic fields in heavy ion collisions: flow and charge transport

  • At the earliest times after a heavy-ion collision, the magnetic field created by the spectator nucleons will generate an extremely strong, albeit rapidly decreasing in time, magnetic field. The impact of this magnetic field may have detectable consequences, and is believed to drive anomalous transport effects like the Chiral Magnetic Effect (CME). We detail an exploratory study on the effects of a dynamical magnetic field on the hydrodynamic medium created in the collisions of two ultrarelativistic heavy-ions, using the framework of numerical ideal MagnetoHydroDynamics (MHD) with the ECHO-QGP code. In this study, we consider a magnetic field captured in a conducting medium, where the conductivity can receive contributions from the electromagnetic conductivity σ and the chiral magnetic conductivity σχ. We first study the elliptic flow of pions, which we show is relatively unchanged by the introduction of a magnetic field. However, by increasing the magnitude of the magnetic field, we find evidence for an enhancement of the elliptic flow in peripheral collisions. This effect is stronger at RHIC than the LHC, and it is evident already at intermediate collision centralities. Next, we explore the impact of the chiral magnetic conductivity on electric charges produced at the edges of the fireball. This initial σχ can be understood as a long-wavelength effective description of chiral fermion production. We then demonstrate that this chiral charge, when transported by the MHD medium, produces a charge dipole perpendicular to the reaction plane which extends a few units in rapidity. Assuming charge conservation at the freeze-out surface, we show that the produced charge imbalance can have measurable effects on some experimental observables, like v1 or ⟨sinϕ⟩. This demonstrates the ability of a MHD fluid to transport the signature of the initial chiral magnetic fields to late times. We also comment on the limitations of the ideal MHD approximation and detail how further development of a dissipative-resistive model can provide a more realistic description of the QGP.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Gabriele InghiramiORCiDGND, Mark MaceORCiDGND, Yuji HironoORCiD, Luca Del ZannaORCiD, Dmitri E. KharzeevORCiD, Marcus BleicherORCiDGND
URN:urn:nbn:de:hebis:30:3-701240
DOI:https://doi.org/10.1140/epjc/s10052-020-7847-4
ISSN:1434-6052
ISSN:1434-6044
Titel des übergeordneten Werkes (Englisch):The European physical journal. C, Particles and fields
Verlag:Springer
Verlagsort:Berlin ; Heidelberg
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Veröffentlichung (online):31.03.2020
Datum der Erstveröffentlichung:31.03.2020
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Datum der Freischaltung:02.10.2022
Jahrgang:80
Ausgabe / Heft:293
Aufsatznummer:Article number: 293
Seitenzahl:26
HeBIS-PPN:504946544
Institute:Physik / Physik
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung 4.0