• search hit 1 of 1
Back to Result List

Messung von 23Al(d,n)24Si zur Einschränkung des rp-Prozesses in X-Ray-Bursts

  • Im Weltall existieren hunderte sehr helle Objekte, die eine hohe konstante Leuchtkraft im Wellenlängenbereich von Gammastrahlung besitzen. Die konstante Leuchtkraft mancher dieser Objekte wird in regelmäßigen Abständen von starken Ausbrüchen, den sogenannten X-Ray-Bursts, unterbrochen. Hauptenergiequelle dieser X-RayBursts ist der „rapid-proton-capture“-Prozess (rp-Prozess). Dieser zeichnet sich durch eine Abfolge von (p,γ)-Reaktionen und β+-Zerfällen aus, die die charakteristischen Lichtkurven produzieren. Für viele am Prozess beteiligte Reaktionen ist der Q-Wert sehr klein, wodurch die Rate der einzelnen Reaktionen von den resonanten Einfängen in die ungebundenen Zustände dominiert wird. Die Unsicherheiten in der Beschreibung der Lichtkurve sind derzeit aufgrund fehlender kernphysikalischer Informationen von vielen am Prozess beteiligten Isotopen sehr groß. Sensitivitätsstudien zeigen, dass dabei die Unsicherheiten der 23Al(p,γ)24Si-Reaktion eine der größten Auswirkungen auf die Lichtkurve hat. Diese werden durch ungenaue und widersprüchliche Informationen zu den ungebundenen Zuständen im kurzlebigen 24Si hervorgerufen. Um Informationen über die Kernstruktur von 24Si zu erhalten, wurde am National Superconducting Cyclotron Laboratory (NSCL), Michigan, USA, die 23Al(d,n)24Si Transferreaktion untersucht. Der in dieser Form erstmals umgesetzte Versuchsaufbau bestand aus einem Gammadetektor zur Messung der Übergangsenergien des produzierten 24Si, einem Neutronendetektor zur Messung der Winkelverteilung der emittierten Neutronen und einem Massensprektrometer zur Identifikation des produzierten Isotops. Mit diesem Aufbau, der eine Detektion der kompletten Kinematik der (d,nγ)-Reaktion ermöglichte, konnten folgende Erkentnisse gewonnen werden: Aus der Energie der nachgewiesenen Gammas konnten die Übergänge zwischen den Kernniveaus von 24Si bestimmt und daraus die Energien der einzelnen Zustände ermittelt werden. Dabei konnte neben dem bereits bekannten gebundenen 2+-Zustand (in dieser Arbeit gemessen bei 1874 ± 2,9keV) und dem ungebundenen 2+-Zustand (3448,8 ± 4,6keV), erstmals ein weiterer ungebundener (4+,0+)-Zustand bei 3470,6 ± 6,2 keV beobachtet werden. Zusätzlich konnte die Diskrepanz, die bezüglich der Energie des ungebundenen 2+-Zustands aufgrund früherer Messungen bestand, beseitigt und die Energieunsicherheit reduziert werden. Aus der Anzahl der nachgewiesenen Gammas konnten ebenfalls die (d,n)-Wirkungsquerschnitte in die einzelnen Zustände von 24Si bestimmt werden. Unter Verwendung der Ergebnisse von DWBA-Rechnungen konnte mithilfe dieser die spektroskopischen Faktoren berechnet werden. Für die angeregten Zustände musste dabei zwischen verschiedenen Drehimpulsüberträgen unterschieden werden. Mittels der Winkelverteilung der nachgewiesenen Neutronen konnte gezeigt werden, dass die Gewichtung anhand der theoretischen spektroskopischen Faktoren zur Berechnung der Anteile des jeweiligen Drehimpulsübertrags am gesamten Wirkungsquerschnitt für den entsprechenden Zustand gute Ergebnisse liefert. Für eine quantitative Bestimmung der spektroskopischen Faktoren der Zustände anhand der Neutronenwinkelverteilungen in 24Si war allerdings die Statistik zu gering. Für den Fall der deutlich häufiger beobachteten 22Mg(d,n)23Al-Reaktion konnte hingegen ein spektroskopischer Faktor für den 23Al-Grundzustand von 0,29 ± 0,04 bestimmt werden. Abschließend wurden die Auswirkungen der gewonnenen Erkenntnisse zur Kernstruktur von 24Si auf die Rate der 23Al(p,γ)-Reaktion untersucht. Dabei konnte aufgrund der besseren Energiebestimmung zum einen die Diskrepanz zwischen den Raten die auf Grundlage der beiden früheren Untersuchungen berechnet wurden und bis zu einem Faktor von 20 voneinander abweichen, beseitigt werden. Zum anderen konnte aufgrund der kleineren Unsicherheit in der Energiebestimmung der Fehlerbereich der Rate verkleinert werden. Die Untersuchungen zeigen, dass die Unsicherheit in der neuen Rate von der Ungenauigkeit der Massenbestimmung der beiden beteiligten Isotope und damit dem Q-Wert der Reaktion dominiert wird. Durch eine bessere Bestimmung des Q-Werts könnte die Unsicherheit in der Rate aufgrund der neuen experimentellen Ergebnisse auf ein Zehntel gesenkt werden.
Metadaten
Author:Clemens Wolf
URN:urn:nbn:de:hebis:30:3-458509
Place of publication:Frankfurt am Main
Referee:René ReifarthORCiD, Michael Wiescher
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2018/03/05
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2018/02/23
Release Date:2018/03/09
Page Number:179
HeBIS-PPN:427145449
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht