• search hit 3130 of 3153
Back to Result List

5-lipoxygenase (5-LO) regulation and activity in colorectal cancer cell lines

  • This work aimed to investigate the regulation and activity of 5-lipoxygenase (5-LO), the central enzyme in leukotriene biosynthesis, in two colorectal cancer cell lines. The leukotriene pathway is positively correlated with the progression of several solid malignancies; however, factors regulating 5-LO expression and activity in tumors are poorly understood. Cancer development, as well as cancer progression, are strongly dependent on the tumor microenvironment. In the conventional monolayer culture of cancer cell lines, cell-matrix and cell-cell interactions present in native tumors are absent. Furthermore, it is already known that various colon cancer cell lines dysregulate several important signaling pathways due to 3D growth. Therefore, the expression of the leukotriene cascade in HT-29 and HCT-116 colorectal cancer cells was investigated within a three-dimensional context using multicellular tumor spheroids to mimic a more physiological environment compared to conventional cell culture. Especially the expression of 5-LO, cPLA2α, and LTA4 hydrolase was altered due to threedimensional (3D) cell growth, which was investigated by qPCR and Western blot analysis. High cellular density in monolayer cultures led to similar results. The observed 5-LO upregulation was found inversely correlated with cell proliferation, determined by cell cycle analysis, and activation of PI3K/mTORC-2- and MEK-1/ERK-dependent pathways, determined using pharmacological pathway inhibition, stable shRNA knockdown cell lines, and analysis via qPCR and Western blot analysis. Following, the transcription factor E2F1 and its target gene MYBL2 were identified to play a role in the repression of 5-LO during cell proliferation. For this purpose, several stable MYBL2 over-expression and ALOX5 reporter cell lines were prepared and analyzed. Since 5-LO was already identified as a direct p53 target gene, the influence of p53, which is variably expressed in the cell lines (HT-29, p53 R273H mut; HCT-116 p53 wt; HCT-116 p53 KO), was investigated as well. Furthermore, HCT-116 cells carrying a p53 knockout were investigated. The PI3K/mTORC-2- and MEK-1/ERK-dependent suppression of 5-LO was also found in tumor cells from other origins (Capan-2, Caco-2, MCF-7), which was determined using pharmacological pathway inhibition and following analysis via qPCR. This suggests that the identified mechanism might apply to other tumor entities as well. 5-LO activity was previously described as attenuated in HT-29 and HCT-116 cells compared to polymorphonuclear leukocytes, which express a highly active 5-LO. However, the present study showed that the enzyme activity is indeed low but inducible in HT-29 and HCT-116 cells. Of note, the general lipid mediator profile and the mediator concentrations were comparable to those of M2 macrophages. Finally, the analysis of substrate availability in HT-29 and HCT-116 cells revealed a vast difference between formed metabolite concentrations and supplemented fatty acid concentrations, indicating that the substrates are either transformed into lipoxygenase-independent metabolites or are esterified into the cellular membrane. In summary, the data presented in this work demonstrate that 5-LO expression and activity are tightly regulated in HT-29 and HCT-116 cells and fine-tuned due to environmental conditions. The cells suppress 5-LO during proliferation but upregulate the expression and activity of the enzyme under cellular stress-triggering conditions. This implies a possible role of 5-LO in manipulating the tumor stroma to support a tumor-promoting microenvironment.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Tamara Jessika GöbelORCiDGND
URN:urn:nbn:de:hebis:30:3-861448
DOI:https://doi.org/10.21248/gups.86144
Place of publication:Frankfurt am Main
Referee:Dieter SteinhilberORCiDGND, Andreas WeigertORCiDGND
Advisor:Astrid Stefanie Kahnt, Dieter Steinhilber
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/07/11
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/07/01
Release Date:2024/07/11
Page Number:235
HeBIS-PPN:519744225
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht