Forecasting stock market volatility and the informational efficiency of the DAX-index options market

  • Alternative strategies for predicting stock market volatility are examined. In out-of-sample forecasting experiments implied-volatility information, derived from contemporaneously observed option prices or history-based volatility predictors, such as GARCH models, are investigated, to determine if they are more appropriate for predicting future return volatility. Employing German DAX-index return data it is found that past returns do not contain useful information beyond the volatility expectations already reflected in option prices. This supports the efficient market hypothesis for the DAX-index options market.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Holger Claessen, Stefan MittnikORCiDGND
Parent Title (German):Center for Financial Studies (Frankfurt am Main): CFS working paper series ; No. 2002,04
Series (Serial Number):CFS working paper series (2002, 04)
Document Type:Working Paper
Year of Completion:2002
Year of first Publication:2002
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2005/06/13
Tag:GARCH; combined forecasting; implied volatility; market efficiency
GND Keyword:Deutschland; Börsenkurs; Volatilität; Prognoseverfahren; Exponential smoothing; Zeitreihenanalyse; Index-Futures; Kapitalmarkteffizienz; ARCH-Prozess; GARCH-Prozess
Revised edition published in: European Journal of Finance, 8, 2002, 302-321.
Institutes:Wissenschaftliche Zentren und koordinierte Programme / Center for Financial Studies (CFS)
Dewey Decimal Classification:3 Sozialwissenschaften / 33 Wirtschaft / 330 Wirtschaft
JEL-Classification:C Mathematical and Quantitative Methods / C2 Single Equation Models; Single Variables / C22 Time-Series Models; Dynamic Quantile Regressions (Updated!)
C Mathematical and Quantitative Methods / C5 Econometric Modeling / C53 Forecasting and Other Model Applications
Licence (German):License LogoDeutsches Urheberrecht