Struktur-, Dynamik- und Stabilitätsuntersuchungen an RNA mittels NMR-Spektroskopie

  • Die Genexpression in prokaryotischen Organismen unterliegt einer Vielzahl von Regulationsmechanismen, deren Aufgabe darin besteht, die Zelle an sich ändernde Umweltbedingungen anzupassen, um so das Überleben des prokaryotischen Organismus zu gewährleisten. Eine Reihe von Hitzeschock- und Virulenzgenen unterliegen temperaturabhängiger Regulation, mit dem Ziel, die Zelle an die sich ändernde Umgebung anzupassen. Die Messung der Temperatur erfolgt dabei über temperatursensitive RNA-Elemente, sogenannte RNA-Thermometer, die sich üblicherweise in der 5’-untranslatierten Region der Gene befinden, die sie regulieren. Sie unterdrücken die Translationsinitiation, indem sie die Shine-Dalgarno (SD)-Sequenz bei niedrigen Temperaturen über Basenpaarung blockieren und dadurch die Bindung des Ribosoms verhindern. In Kapitel 2 der vorliegenden Arbeit wurde die thermodynamische Stabilität der temperatursensitiven Haarnadelschleife 2 des Salmonella FourU RNA-Thermometers über einen breiten Temperaturbereich analysiert. Freie Enthalpie-, Enthalpie- und Entropie-Werte für die Basenpaaröffnung der einzelnen Nukleobasen innerhalb der RNA wurden über die temperaturabhängige Messung von Iminoprotonen-Austauschraten mittels NMR-Spektroskopie bestimmt. Die Austauschraten wurden für die Wildtyp-RNA und die A8C-Mutante bestimmt und miteinander verglichen. Es zeigte sich, dass die Wildtyp-RNA durch das außergewöhnlich stabile Basenpaar G14-C25 stabilisiert wird. Dies konnte durch die Untersuchung der Entfaltung der destabilisierenden G14A-C25U-Doppelmutante verifiziert werden. Über CD-spektroskopsiche Untersuchungen konnte der globale Entfaltungsübergang der jeweiligen RNA analysiert werden. Das Mismatch-Basenpaar innerhalb des Wildtyp-RNA-Thermometers (A8-G31) erwies sich als Ursache für die geringere Kooperativität des Entfaltungsübergangs der Wildtyp-RNA im Vergleich zur A8C-Mutante. Enthalpie- und Entropie-Werte für die Basenpaaröffnung einzelner Nukleotide sind für beide RNAs linear korreliert. Die Steigungen dieser Korrelationen stimmen mit den Schmelzpunkten der RNAs überein, die über CD-Spektroskopie bestimmt wurden. Entfaltung der RNA tritt also genau dann auf, wenn alle Nukleotide gleiche thermodynamische Stabilitäten besitzen. Die Resultate sind mit einem Reißverschluss-Mechanismus für die RNA-Helix Entfaltung konsistent und erklärbar, in dem die Stapelinteraktionen der benachbarten Nukleobasen innerhalb der RNA-Helix verantwortlich für die beobachtete Kooperativität sind. Die Ergebnisse weisen auch auf die Wichtigkeit der RNA-Lösungsmittel-Interaktion für die Stabilität der RNA-Struktur hin. So konnten langreichweitige Wechselwirkungen der A8C-Mutation auf die Stabilität der G14-Nukleobase identifiziert werden, die möglicherweise über die Hydrathülle der RNA vermittelt werden. Schließlich konnte für das FourU-Motiv eine Mg2+-Bindestelle identifiziert werden, die die temperaturabhängige Stabilität des RNA-Thermometers beeinflusst. Es besteht also die Möglichkeit, dass Änderungen der intrazellulären Mg2+-Konzentration die Expression des agsA-Gens in vivo modulierend beeinflussen. In Kapitel 3 dieser Arbeit wurden die dynamischen Eigenschaften des Phosphodiesterrückgrats einer perdeuterierten cUUCGg-Tetraloop-14mer-RNA untersucht. Dazu wurden die Relaxationseigenschaften aller 31P-Kerne dieser RNA bei magnetischen Feldstärken von 300, 600 und 900 MHz untersucht. Dipolare Relaxationsbeiträge konnten unterdrückt werden, indem eine perdeuterierte RNA-Probe in einem D2O-Puffer verwendet wurde. Um die 31P-Relaxationsdaten (R1, R2) interpretieren zu können, wurde zusätzlich mittels Festkörper-NMR die Chemische Verschiebungsanisotropie (CSA) der 31P-Kerne des Phosphodiesterrückgrats bestimmt. Die Messungen wurden bei verschiedenen Salzkonzentrationen und unter unterschiedlichen Hydratationsbedingungen durchgeführt. Aus den Daten konnte ein 31P-CSA-Wert von 178.5 ppm im statischen Zustand (S2 = 1) bestimmt werden. Auf der Grundlage der durchgeführten R1- und R2-Messungen wurde eine Modelfree-Analyse durchgeführt, um Informationen über die schnellen Dynamiken des Phosphodiesterrückgrats zu erhalten. Die Resultate zeigen, dass die Dynamiken des Phosphodiesterrückgrats auf der Subnanosekundenzeitskala stärker ausgeprägt sind als die Dynamiken der Ribofuranosylreste und der Nukleobasen. Des Weiteren konnte gezeigt werden, dass die Dynamik einer individuellen Phosphatgruppe zu der jeweiligen 5’-benachbarten Nukleobase korreliert ist. In Kapitel 4 dieser Arbeit wird die Entwicklung neuer Methoden beschrieben, mit denen Torsionswinkelinformation aus der Analyse kreuzkorrelierter Relaxationsraten gewonnen werden können. Im ersten Teil des Kapitels wird die Entwicklung einer neuen NMR-Pulssequenz beschrieben, über die der glykosidische Torsionswinkel Chi in 13C,15N-markierten Oligonukleotiden bestimmt werden kann. Mit dem neuen quantitativen Gamma-HCNCH-Experiment ist es möglich, die dipolaren kreuzkorrelierten Relaxationsraten Gamma-C6H6-C1´H1´ (Pyrimidine) und Gamma-C6H6-C1´H1´ (Purine) zu messen. Die kreuzkorrelierten Relaxationsraten wurden an einer 13C,15N-markierten cUUCGg-Tetraloop-14mer-RNA bestimmt. Die aus den Raten extrahierten Chi-Winkel wurden mit bereits vorhandener Strukturinformation verglichen. Sie stimmen bemerkenswert gut mit den Winkeln der Kristallstruktur des Tetraloops überein. Zusätzlich wurde die neue Methode an einer größeren 30mer-RNA, dem „Stemloop D“ (SLD) aus dem Coxsackievirus-B3-Kleeblatt, getestet. Für die SLD-RNA wurde der Effekt von anisotroper Rotationsdiffusion auf die Relaxationsraten untersucht. Es konnte gezeigt werden, dass die Chi-Winkelbestimmung besonders für Nukleotide in der anti-Konformation sehr genau ist und die Methode eine eindeutige Unterscheidung von syn- und anti-Konformation zulässt. Im zweiten Teil von Kapitel 4 wird die Entwicklung des Gamma-HCCCH-Experiments beschrieben. Hierbei handelt es sich um eine neue NMR-Pulssequenz zur Messung der Gamma-C1´H1´-C3´H3´-Rate in 13C-markierten RNAs. Die Funktionsfähigkeit der neuen Methode wurde an einer cUUCGg-Tetraloop-14mer-RNA demonstriert. Zusätzlich dazu wurden die analytischen Gamma-C1´H1´-C3´H3´(P,nü_max)-, Gamma-C1´H1´-C4´H4´(P,nü_max)- und Gamma-C2´H2´-C4´H4´(P,nü_max)-Abhängigkeiten mathematisch hergeleitet. Die an der 14mer-RNA gemessenen Gamma-C1´H1´-C3´H3´-Raten wurden mit Hilfe der Gamma-C1´H1´-C3´H3´(P,nü_max)-Beziehung analysiert. Die Ergebnisse für die Pseudorotationsphase P sind konsistent mit Referenzwinkeln aus der 14mer-NMR-Struktur und den bereits bekannten (Gamma-C1´H1´-C2´H2´)/(Gamma-C3´H3´-C4´H4´)-Ratenverhältnissen. Die neue Methode liefert zusätzliche Informationen, um Konformation (P, nü_max) und Dynamik S2(C1´H1´-C3´H3´) der Ribosereste in RNA-Molekülen genauer beschreiben zu können. In Kapitel 5 dieser Arbeit wird die Entwicklung des 3D-HNHC-Experiments, einer neuen NMR-Pulssequenz, beschrieben. Dieses Experiment ermöglicht es, die H2-, C2- und N1-Resonanzen in Adenin-Nukleobasen 13C, 15N-markierter RNA-Oligonukleotide miteinander zu korrelieren. Die Funktionsfähigkeit der neuen Methode wurde an einer mittelgroßen, entsprechend markierten 36mer-RNA demonstriert. Die neue Methode vereinfacht die Zuordnung der Kerne der Adenin-Nukleobasen, da Zuordnungsmehrdeutigkeiten aufgrund überlappender Resonanzen in der 1H-Dimension aufgelöst werden können. In Kombination mit dem TROSY-relayed-HCCH-COSY-Experiment liefert das neue 3D-HNHC-Experiment das fehlende Glied für die Zuordnung der Imino-H3-Resonanzen der Uracil-Nukleobasen über das AU-Basenpaar hinweg zu den H8-Resonanzen der Adenin-Nukleobasen.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Jörg RinnenthalGND
URN:urn:nbn:de:hebis:30-84976
Referee:Harald SchwalbeORCiDGND, Clemens GlaubitzORCiDGND
Advisor:Harald Schwalbe
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/11/11
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/10/19
Release Date:2010/11/11
Page Number:292
HeBIS-PPN:23000864X
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht