Regulation der Genexpression in halophilen Archaea

  • Im Rahmen dieser Arbeit wurde die Funktion ausgewählter Gene näher charakterisiert und ihr globaler Einfluß auf die Regulation der Genexpression untersucht. Im Fokus der Untersuchungen stand ein Gen, welches im Rahmen der Promotion von Alexander Zaigler in der Arbeitsgruppe Soppa (Universität Frankfurt) zunächst als Transkriptionsregulator ähnlich zu rspA aus E. coli identifiziert wurde. Zu Beginn dieser Arbeit konnte durch in silico Analysen das entsprechende Genprodukt zur Enolase Superfamilie (COG1441) zugeordnet werden. Mit Hilfe der „pop-in/pop-out“ Methode wurde das Gen in H. volcanii in frame deletiert und durch Wachstumsversuche, Northern- sowie Westernblot Analysen näher charakterisiert. Bei der Untersuchung des Wachstums konnte ein bemerkenswerter Phänotyp entdeckt werden: nur der Wechsel der Nährstoffquelle von reichhaltigen zu armen Bedingungen resultierte in einer dreitägigen Lagphase. Darüber hinaus wurde die Genexpression im Laufe eines Wachstumzyklus mittels Northern- und Westernblot Analysen bestimmt. Während das Transkript in reichhaltigem Medium nur transient expremiert wurde, wurde es in nährstoffarmen Bedingungen in allen Wachstumsphasen sehr stark induziert. Durch die Ergebnisse konnte zudem eine translationale Regulation der Genexpression nachgewiesen werden. Die Resultate offenbarten eine wichtige Funktion bei der Transition von reichem zu ärmerem Nährstoffangebot und führten schließlich zur Genbezeichnung iftA („important for transition A“). Desweiteren wurden Transkriptomuntersuchungen der Deletionsmutante im Vergleich zum Wildtyp zum Zeitpunkt der höchsten transienten Expression von iftA durchgeführt. Dadurch konnte gezeigt werden, dass iftA etwa 1% aller Gene des Genoms beeinflußt und gleichzeitig die Zahl differentieller Funktionen dieser Gene sehr gering ist. Die Ergebnisse führten insgesamt zu der Annahme, dass iftA eine Doppelfunktion besitzt, sowohl als enzymatisches Protein im Energiestoffwechsel als auch als essentieller Regulator mit noch unbekannter Funktion. Neben iftA fiel das Augenmerk auf mehrere Gene, die im Rahmen der Promotion von Neta Altman-Price an der Universität in Tel-Aviv als Histon-Acetylasen und –Deacetylasen identifiziert wurden. Zudem konnte in H. volcanii ein essentielles Gen, welches für ein Histon kodiert, entdeckt werden. Das Histon besitzt konservierte Lysinreste, die im eukaryotischen Histon H3 Ziele für eine posttranslationale Acetylierung sind. Für die weiteren Untersuchungen wurden die Lysinreste irreversibel zum einen in Glutamin (acetylierter Zustand) und zum anderen in Arginin (deacetylierter Zustand) mutiert. Im Rahmen dieser Arbeit wurden die Funktionen und die Einflüsse der beiden Histonmutanten sowie einer Acetylase- (delta pat1) und einer Deacetylase-Deletionsmutante (delta sir2) auf die globale Genregulation analysiert. Dazu wurden zunächst Transkriptomuntersuchungen in der exponentiellen Wachstumsphase mittels Microarray Analysen an den Mutanten im Vergleich zum Wildytp durchgeführt. Die Ergebnisse zeigten einen erheblich stärkeren Einfluß auf die Regulation der Genexpression durch das acetylierte Histon sowie der Deacetylase-Deletionsmutante im Vergleich zu den Ergebnissen des deacetylierten Histons und der Acetylase-Deletionsmutante. In der exponentiellen Wachstumsphase liegt das Histon in H. volcanii daher in überwiegend deacetylierter Form vor. Durch die Analysen konnte auch demonstrieren werden, dass Sir2 und das Histon eine regulatorische Wirkung auf exakt die gleichen Gene ausüben und daher unmittelbar miteinander in Verbindung stehen. Die experimentelle Bestätigung dieses Zusammenhangs stellt im Reich der Archaea bisher ein absolutes Novum dar. Die Untersuchungen des Transkriptoms der delta sir2 Mutante enthüllte zudem einen positiven Einfluß von Sir2 auf ein größeres Gencluster (HVO_1201-25). Die Gene dieses Clusters konnten durch in silico Analysen der Chemotaxis und der Flagellenbiosynthese zugeordnet werden. Für die weitere Charakterisierung der Deletionsmutante wurden daher Untersuchungen zur Bestimmung der Motilität von H. volcanii durchgeführt. Es konnte gezeigt werden, dass die Deletion von Sir2 die Beweglichkeit und gerichtete Fortbewegung von H. volcanii in erheblichem Maße beeinflußte, während die Biosynthese der Flagellen nicht beeinträchtigt war. Die Deacetylierung spielt daher eine unmittelbar Rolle bei der Signaltransduktion und Motilität. Insgesamt konnte durch die Arbeit gezeigt werden, dass die Acetylierung und Deacetylierung von Proteinen durch Pat1 resp. Sir2 die Regulation der Genexpression beeinflußt. Dies geschieht in H. volcanii indirekt durch die posttranslationale Veränderung von internen Signalen oder direkt durch die Modulierung des Histons und die damit verbundene Änderung der DNA-Struktur.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Michael Dambeck
URN:urn:nbn:de:hebis:30-76417
Referee:Jörg SoppaORCiD
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2010/04/22
Year of first Publication:2010
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2010/04/14
Release Date:2010/04/22
HeBIS-PPN:222702109
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht