Disruption of the intracellular trafficking of ganglioside GM1 in a genetically accurate model of the neurodegenerative storage disease juvenile neuronal ceroid-lipofuscinosis

  • Juvenile neuronal ceroid-lipofuscinosis (JNCL) is a rare lysosomal storage disease in children with lethal outcome and no therapy. The origin of JNCL has been traced to autosomal recessive mutations in the CLN3 gene, and ~85% of the JNCL patients harbor a 1.02 kb deletion that removes the exons 7 and 8 and the surrounding intronic DNA (CLN3Δex7/8). So far, structure, function and localization of the CLN3 protein remain elusive. However, there is strong evidence that CLN3 modulates a process or condition that is essential in many cellular pathways. Lipid metabolism and antero-/retrograde transport, two mechanisms CLN3 was previously implicated in, fulfill these requirements. Notably, also a bioactive group of glycosphingolipids referred to as gangliosides is tightly interrelated with these functions. Furthermore, a-series gangliosides have been shown to be involved in the development and sustenance of the brain, where they are essential for neurite outgrowth and cell survival. Defects in ganglioside metabolism were shown to play a crucial role in many lysosomal storage disorders. However, the contribution of gangliosides to NCL pathology is largely unknown. The present study analyzed central enzymes and metabolites of the a-series ganglioside pathway in a JNCL cell model. The core finding was, thereby, the reduced amount of the neuroprotective ganglioside GM1 in homozygous CbCln3Δex7/8 cells. This was caused by the enhanced action of the GM1-degrading multimeric enzyme complex and in particular, by the upregulation of protein levels and increased enzyme activity of β-galactosidase (Glb1). Improved binding of Glb1 to substrate-carrying membranes was provided by an increase in LBPA levels. In combination with other smaller alterations in the ganglioside pattern, a shift towards less complex gangliosides became present. The resulting loss of neuroprotection may be the reason for the multifocal pathology in homozygous CbCln3Δex7/8 cells. The second part of the present study investigated the cellular mechanisms behind the altered ganglioside profile with regard to the potential role of CLN3. Here, the anterograde transport of GM1 to the plasma membrane presented a positive correlation with the amount of full-length CLN3. In case of the truncated protein this correlation was missing, resulting in reduced PM staining with CTxB-FITC. However, transfection of full-length CLN3 in these cells restored the CTxB-FITC intensity. Based on the neuroprotective role of GM1, the corresponding increase in GM1 levels may be the cause for the restoration effects observed in previous studies using full-length CLN3. Hence, administration of GM1 was expected to improve cell viability of homozygous CbCln3Δex7/8 cells and beyond that to rescue potentially some disease phenotypes. However, no effect could be observed. The reason for this may be reduced caveolar uptake and the mislocalization of ganglioside GM1 to the trans-Golgi network (TGN) and redirection towards degradative compartments. Both are in line with the idea of an impaired endocytic flux in CLN3 deficiency. The observed localization of CLN3 in the TGN suggests a potential role for CLN3 in the lipid sorting machinery, subsequently altering membrane composition and its regulatory functions. The resulting imbalance may affect many of the cellular processes impaired in JNCL.

Download full text files

Export metadata

Author:Aleksandra Somogyi
Place of publication:Frankfurt am Main
Referee:Walter Volknandt, Paul DierkesORCiD
Document Type:Doctoral Thesis
Date of Publication (online):2016/07/21
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/07/08
Release Date:2016/07/21
Page Number:129
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht