Identification of selected secondary metabolites from Xenorhabdus and investigation on the biosynthesis of anthraquinones from Photorhabdus

  • Xenorhabdus and Photorhabdus bacteria are gaining more and more attention as a subject of research because of their unique yet similar life cycle with nematodes and insects. This work focused on the secondary metabolites that are produced by Xenorhabdus and Photorhabdus. With the help of modern HPLC-MS methodologies and increasingly available bacterial genome sequences, the structures of unknown secondary metabolites could be elucidated and thus their biosynthesis pathways could be proposed, too. The first paper reported 17 depsipeptides termed xentrivalpeptides produced by the bacterium Xenorhabdus sp. 85816. Xentrivalpeptide A could be isolated from the bacterial culture as the main component. The structure of xentrivalpeptide A was elucidated by NMR and the Marfey´s method. The remaining xentrivalpeptides were exclusively identified by feeding experiments and MS fragmentation patterns. The second paper described the discovery and isolation of xenoamicin A from Xenorhabdus mauleonii DSM17908. Additionally, other xenoamicin derivatives from Xenorhabdus doucetiae DSM17909 were analyzed by means of feeding experiments and MS fragmentation patterns. The xenoamicin biosynthesis gene cluster was identified in Xenorhabdus doucetiae DSM17909. The manuscript for publication focused on the biosynthesis of anthraquinones in Photorhabdus luminescens. The Type II polyketide synthase for the biosynthesis of anthraquinone derivatives was discovered in P. luminescens in a previous publication by the Bode group,1 in which a partial reaction mechanism for the biosynthesis has been proposed. The manuscript reported in this thesis however elucidated the biosynthetic mechanisms in a greater detail as compared to the previous publication. Particularly, the biosynthetic mechanism was deciphered through heterologous expression of anthraquinone biosynthesis (ant) genes in E. coli. Additionally, deactivation of the genes antG encoding a putative CoA ligase and antI encoding a putative hydrolase, was performed in P. luminescens. Selected ant genes were over-expressed in E. coli as well as the corresponding proteins purified for in vitro assays. Model compounds were chemically synthesized as possible substrates of AntI and were used for in vitro assays. Here, it was revealed that the CoA ligase AntG played an essential role in the activation of the ACP AntF. Furthermore, a chain shortening mechanism by the hydrolase AntI was identified and was further confirmed by in vitro assays using model compounds. Additionally, this chain shortening mechanism was supported by homology based structural modeling of AntI.

Download full text files

Export metadata

Author:Qiuqin Zhou
Place of publication:Frankfurt
Referee:Helge Björn BodeORCiDGND, Martin GriningerORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2016/07/28
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/07/13
Release Date:2016/07/28
Page Number:291
Institutes:Biowissenschaften / Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht