Untersuchungen zur Wirkungsweise des pflanzenähnlichen Cryptochroms CryP im Modellorganismus Phaeodactylum tricornutum
- Bei Cryptochromen handelt es sich um Blaulichtrezeptoren der Cryptochrom-Photolyase-Proteinfamilie (CPF). Mitglieder dieser Proteinfamilie sind in allen Domänen des Lebens zu finden und haben eine essentielle Rolle in der Reparatur der DNA sowie der lichtgesteuerten Regulation der Expression. Cryptochrome sind in der Regel keine DNA-reparierenden Proteine. Sie sind regulativ an der Steuerung der inneren Uhr und des Zellzyklus der Organismen beteiligt. In der Kieselalge Phaeodactylum tricornutum konnten bisher sechs phylogenetisch unterschiedliche Mitglieder der CPF identifiziert werden. Bei CryP handelt es sich um das einzige pflanzenähnliche Cryptochrom der photoautotrophen Diatomee. Für das Protein CryP konnte bereits ein blaulichtinduzierter Photozyklus durch die Absorption der Chromophore 5-Methenlytetrahydrofolat (MTHF) und Flavinadenindinukleotid (FAD) gezeigt werden. Außerdem ist eine regulative Wirkung des Proteins auf die Lichtsammelkomplexe (Lhc) der Diatomee bekannt. Für eine weitere Charakterisierung des CryPs wurde in dieser Arbeit zunächst das Absorptionsverhalten unter verschiedenen Wellenlängen beobachtet, um so einen Einblick in eine mögliche Aktivierung und Deaktivierung des Proteins durch Licht unterschiedlicher Wellenlängen zu erlangen. Es zeigte sich hierbei eine mit pflanzlichen Cryptochromen vergleichbare Anreicherung verschiedener Redoxzustände des FADs in Abhängigkeit von der Wellenlänge.
Für eine Aufklärung der Wirkungsweise des CryP-Proteins wurden verschiedene Hypothesen untersucht: Die phylogenetische Nähe und ein ähnliches Absorptionsverhalten des CryPs zu Cryptochromen mit Reparaturfähigkeit für einzelsträngige DNA (Cry-DASH) führte zu einer Untersuchung des Proteins als möglicher Transkriptionsfaktor. Hierfür konnte eine Kernlokalisation des Proteins nachgewiesen werden, was Rückschlüsse auf eine potentielle Regulation der Expression mittels DNA-Bindung zulässt. Außerdem wurde gezeigt, dass CryP DNA-Bindefähigkeit besitzt. Die bisher nachgewiesenen Bindungen waren jedoch unspezifischer Art. Dies konnte auch für die Promotersequenz eines der durch CryP regulierten Gene lhcf1 festgestellt werden. Auf Grund der unspezifischen DNA-Bindung wurde eine zweite Hypothese für CryP untersucht: CryP wirkt regulativ auf die Expression verschiedener Gene durch Protein-Protein-Interaktionen und ist Teil einer Reaktionskaskade zur Signalweiterleitung in P. tricornutum.
Durch die Untersuchung der zweiten Hypothese konnten drei Interaktionspartner für CryP identifiziert und eine Interaktion verifiziert werden. Hierbei handelt es sich um das Protein AAA mit einer bisher unbekannten Funktion und das Protein BolA, welches Teil der zuerst in Escherichia coli identifizierten BolA-like-Proteinfamilie ist. Außerdem konnte eine Interaktion mit dem Cold-Shock-Domänen-Protein CSDP gezeigt werden. Bei den Proteinen BolA und CSDP handelt es sich um potentiell regulierende Faktoren der Transkription und Translation, was Teil einer Reaktionskaskade sein kann. Die aus anderen Organismen bekannten Funktionen des BolA-Proteins überschneiden sich mit den in CryP-Knockdown-Mutanten beobachteten Effekten. Sie zeigen eine erhöhte Sensitivität für Stresssituationen wie abweichende Nährstoffkonzentration, Osmolaritäten und Temperaturen. Diese Beobachtungen stellen einen Zusammenhang der durch einen CryP-Knockdown beobachteten Effekte und der CryP-BolA-Interaktion her. Durch Homologien zu Cold-Shock-Proteinen aus Chlamydomonas reinhardtii gibt die CryP-Interaktion mit dem Protein CSDP Hinweise auf einen potentiellen Mechanismus zur Regulation der Lhc-Proteine, für welche zuvor ein CryP-abhängiger Effekt beschrieben war.
Über die Protein-Protein-Interaktionen hinaus wurde die Phosphorylierung des CryPs als Möglichkeit der Signalweiterleitung untersucht. Es konnte eine reversible Phosphorylierung des heterolog aus E. coli isolierten CryPs gezeigt werden. Diese zeigt Ähnlichkeiten zu bekannten Phosphorylierungen pflanzlicher Cryptochrome und gibt Hinweise auf einen Mechanismus der Signalweiterleitung.
Durch die Untersuchung der CryP-regulierten Transkription mit P. tricornutum CryP-Knockdown-Mutanten durch Next-Generation-Sequencing (NGS) konnte die Hypothese der regulativen Proteinkaskade und der Signalweiterleitung weiter bestätigt werden. Die Auswirkungen des CryPs auf die Transkription erwiesen sich als nicht auf einen Teilbereich des Metabolismus begrenzt, sondern sind in einem großen Teil der funktionellen Gengruppen in P. tricornutum zu sehen. Außerdem konnten drei Klassen CryP-regulierter Gene festgestellt werden. Kategorie 1: die ausschließlich unter Blaulicht regulierten Gene; Kategorie 2: die sowohl unter Blaulicht als auch im Dunkeln regulierten Gene und Kategorie 3: die ausschließlich im Dunkeln regulierten Gene. Ein im Dunkeln und unter Blaulicht jeweils unterschiedlicher regulativer Effekt deutet auf eine Doppelfunktion des CryPs hin. Möglicherweise hat das Cryptochrom unterschiedliche lichtabhängige und lichtunabhängige Funktionen.
Durch die Analyse der CryP-regulierten Genexpression konnte außerdem ein Zusammenhang zwischen CryP und weiteren Photorezeptoren gezeigt werden. Der CryP-Proteingehalt in der Zelle hat einen regulativen Einfluss auf das CPF1-Protein, eine Photolyase mit dualer Funktion aus der gleichen Proteinfamilie. Zusätzlich konnte auch ein Einfluss auf die Lichtsensitivität der Genexpression des Rotlichtrezeptors Phytochrom (DPH) durch CryP gezeigt werden. Vergleichbar mit höheren Pflanzen scheint ein regulatives Netzwerk der Photorezeptoren auch in der Diatomee P. tricornutum vorhanden zu sein.