Structural and functional characterization of cytochrome c oxidase, cytochrome bc1 complex and heme A synthase from Aquifex aeolicus

  • The electron transport chain (ETC) is used by cells to create an electrochemical proton gradient which can be used by the ATP synthase to produce ATP. ETC, also called respiratory chain, is formed in mitochondria by four complexes (complex I-IV) and mediated by two electron carriers: cytochrome c and ubiquinone. Electrons are passed from one complex to another in a series of redox reactions coupling proton pumping from the negative (N) side of the membrane to the positive (P) side. Complex I can introduce electrons into the ETC by oxidizing NADH to NAD+ and reducing quinone (Q) to quinol (QH2). The process accomplishes pumping of four protons across the membrane. Complex II is another electrons entry point. It catalyzes the oxidation of succinate to fumarate while reducing Q to QH2. Complex III, also called cytochrome bc1 complex, can transfer the electrons from QH2 to cytochrome c and couple to proton pumping. In complex III the Q-cycle contributes four proton translocations: two protons are required for the reduction of one quinone to a quinol and two protons are released to the P side. Complex IV (cytochrome c oxidase), the terminal complex of the ETC, catalyzes the electron transfer to oxygen and pumps four protons to the P side. Structures of ETC complexes are available. However, the structure of a hyperthermophilic cytochrome bc1 complex has not been elucidated till now. Additionally, the dimeric crystal structure of cytochrome c oxidase from bovine has been discussed controversially. To build up a functional complex, cofactors are required. The active site of A- and B-type cytochrome c oxidases contain the high spin heme a which is synthesized by the integral membrane protein heme A synthase (HAS). HAS can form homooligomeric complexes and its oligomerization is essential for the biological function of HAS. HAS is evolutionarily conserved among prokaryotes and eukaryotes. Despite its importance, little is known about the detailed structural properties of HAS oligomers. During my PhD studies, I focused on the cytochrome c oxidase (AaCcO), the cytochrome bc1 complex (Aabc1) and the heme A synthase (AaHAS) from Aquifex aeolicus. This organism is one of the most hyperthermophilic ones and can live at extremely high temperatures, even up to 95 °C. Respiratory chain complexes provide energy for the metabolism of organisms, and their structures have been studied extensively in the past few years. However, there has been a lack of atomic structures of complexes from hyperthermophilic and ancient bacteria, so little is known about the mechanism of these macromolecular machines under hyperthermophilic conditions. Therefore, my PhD studies had four main objectives: 1) to structurally and functionally characterize AaCcO, 2) to reveal the mechanism of Aabc1 thermal stability based on its structure, 3) to determine the oligomerization of AaHAS, 4) to provide valuable insights into the relationship between function and oligomerization of AaHAS. 1) Structure of AaCcO Heme-copper oxidases (HCOs) catalyze the oxygen reduction reaction being the terminal enzymes in the plasma membranes in many prokaryotes or of the aerobic respiratory chain in the inner mitochondrial membrane. By coupling this exothermic reaction to proton pumping across the membrane to the P side, they contribute to the establishment of an electrochemical proton gradient. The energy in the proton electrochemical proton gradient is used by the ATP synthase to generate ATP. HCOs are classified into three major families: A, B and C, based on phylogenetic comparisons. The well-studied aa3-type cytochrome c oxidase from Paracoccus denitrificans (P. denitrificans) represents A-family HCOs. So far, the only available structure of the ba3-type cytochrome c oxidase from Thermus thermophilus represents the B-family of HCOs. This family contains a number of bacterial and archaeal oxidases. The C-family contains only cbb3-type cytochrome c oxidases. The AaCcO is one of the ba3-type cytochrome c oxidases. Based on the genomic DNA sequence analysis, it has been revealed that A. aeolicus possesses two operons coding for cytochrome c oxidases (two different subunit I genes, two different subunit II genes and one subunit III gene). So far, only subunits CoxB2 and CoxA2 were identified. The presence of the additional subunit IIa was reported in 2012. Moreover, a previous paper reported that AaCcO can use horse heart cytochrome c and decylubiquinol as electron donors and the typical cytochrome c oxidase inhibitor cyanide does not block the reaction completely. In the course of my PhD studies, I performed heterologous expression of AaCcO in Pseudomonas stutzeri (P. stutzeri) and co-expression with AsHAS in Escherichia coli, respectively. The subcomplex CoxA2 and CoxB2 can be purified from P. stutzeri, however, it lacks heme A. Additionally, a protocol for the heterologous production of cytochrome c555 from A. aeolicus was established. In parallel, I also purified the AaCcO from native membranes according to previously reported methods with some modifications. The activity of AaCcO with its native substrate, cytochrome c555, was 14 times higher than with horse heart cytochrome c. To enable a detailed investigation and comparison of AaCcO and other cytochrome c oxidases, the cryo-EM structure of AaCcO was determined to 3.4 Å resolution. It shows that the three subunits CoxA2, CoxB2, and IIa are tightly bound together to form a dimer in the membrane. Surprisingly, CoxA2 contains two additional TMHs (TMH13 and TMH14) to enhance the protein stability. The cofactors heme a3, heme b, CuA and CuB are also identified. Interestingly, two molecules of 1,4-naphthoquinone and cardiolipin were observed in the dimer interface. Based on the structure analysis, the AaCcO possesses only the K-pathway for proton delivery to the active site and proton pumping. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Hui Zeng
URN:urn:nbn:de:hebis:30:3-545992
Place of publication:Frankfurt am Main
Referee:Klaas Martinus PosORCiD, Hartmut MichelORCiDGND
Advisor:Hartmut Michel
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2020/04/04
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/04/01
Release Date:2020/05/05
Page Number:203
HeBIS-PPN:463765699
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht