Genetic diversity and environmental structuring of fungal and algal symbionts in the lichen Umbilicaria pustulata

  • The existence of all living organisms depends on their multidimensional adjustment to the conditions of the environment in which they live. Organisms must constantly deal with not only abiotic stress factors (such as water availability or extreme temperatures), but also with various biotic interactions (the competition between different organisms, both intraspecific and interspecies). When there is a consensus between an organism and the environment it means that this organism is well adjusted and increases its probability of survival. Symbiotic organisms possess the ability to establish an intimate interaction with another species (symbiont) that provides benefits for survival. Organisms that are involved in obligate symbiosis may adapt to a new environment by switching to another symbiotic partner that is locally better adapted; or by reshuffling symbiont communities present in the holobiont. This ability potentially gives them the opportunity to flexibly react to changing environmental conditions. In this thesis I studied the genetic diversity and geographic distribution of symbiont lineages in a lichen symbiosis to better understand environmental adaptation in symbiotic systems. Lichens are symbiotic associations of photobionts (one or several green-algal species or cyanobacteria), filamentous mycobionts (lichen-forming fungi) and co-inhabiting symbiotic microorganisms (lichen-associated bacteria, endolichenic fungi, and basidiomycete yeast). The coccoid green algae of the genus Trebouxia are the most common and the most studied lichen photobionts. However, the lack of formal Trebouxia taxonomy impedes our understanding of this photobiont diversity. Different species of mycobionts may share the same photobionts and a single species of mycobiont may associate with multiple, genetically different photobionts. Interactions among symbionts are not random and are constrained by evolutionary and environmental processes. The ability to associate with specific symbiotic partner is considered as a lichen strategy to facilitate adaptation to the constantly changing environments. The objectives of this thesis were to 1. Elucidate the intraspecific diversity of fungal and algal symbionts in the lichen Umbilicaria pustulata, given a range-wide (Europe-wide) sampling; 2. Evaluate species delimitation in trebouxioid photobionts based on molecular data, and 3. Quantify the climatic niches of photobiont lineages within U. pustulata, to establish whether the association with particular photobionts may modify the range and ecological niche of this lichen. The main findings of this thesis are: 1. The genetic diversity within trebouxoid photobiont of U. pustulata is higher than within the mycobiont. The most variable photobiont loci are nrITS rDNA, psbJ-L, and COX2. RbcL is the least variable photobiont locus. The most variable mycobiont loci are MCM7 and TSR1. This study shows a lack of genetic variability in the mycobiont loci EF1, nrITS rDNA, RPB1, and RPB2. 2. U. pustulata shows a low level of selectivity and is associated with numerous (most likely six) putative algal species. All photobiont haplotypes found in U. pustulata are shared between other lichen-forming fungi species, showing different patterns of species-to-species and species-to-community interactions. 3. The geographic distribution of U. pustulata symbionts associations is strongly connected to changes in the climatic niches. The mycobiont-photobiont interactions change along latitudinal temperature gradients (cold-adapted hotspot) and in Mediterranean climate zones (warm-adapted hotspot). U. pustulata broadens its distribution range by switching between photobionts that posses specific environmental preferences. Overall, this thesis contributes to the understanding of the symbiont diversity, fungal-algal association patterns and local adaptation linked to symbiont-mediated niche expansion in lichens. While identifying intraspecific diversity of both lichen symbionts is a key predisposition to understand symbiont interactions, population dynamics or co-evolution, my comparative study of the sequence-based molecular markers is relevant to reveal cryptic diversity in other lichen-forming fungi and their photobionts. The determination of species boundaries in lichen symbionts is essential for the study of selectivity and specificity, co-distribution, and co-evolution. Whereas the phylogenetic relationships of Trebouxiophyceae are poorly understood, the application of a novel multifaceted approach based on phylogenetic relationships, coalescence methods and morphological traits presented in this thesis is a promising tool to address species boundaries within this heterogeneous genus. This thesis provides evidence for symbiont-mediated niche expansion in lichens and highlights the preferential photobiont association from a niche-modeling perspective. My results shed light on symbiont polymorphism and partner switching as potential mechanisms of environmental adaptation in the lichen symbiosis. The spatial genetic pattern found in U. pustulata symbionts supports the concept of ecological fitting and is consistent with patterns found in other lichen studies. Results presented here relate also to findings in different symbiotic systems, like reef-building corals, where different latitudinal patterns and symbiont switching has been reported as an adaptive response to severe bleaching events. Furthermore, this study is timely in light of global warming, because the identification of interaction hotspots among symbionts helps to understand how lichens or other symbiotic organisms adjust to the ongoing climate change. This knowledge will, in turn, facilitate the proper conservation of the most vulnerable lichen populations. My doctoral thesis provides a conceptual framework for analyzing symbiont diversity, interaction patterns, and symbiont-mediated niche expansion that could be applied to other types of lichen species as well as other organisms involved in facultative or obligate symbiosis.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Author:Anna Dominika Sadowska-Deś
Place of publication:Frankfurt am Main
Referee:Imke SchmittORCiDGND, Georg ZizkaORCiDGND
Document Type:Doctoral Thesis
Date of Publication (online):2020/12/06
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/01/24
Release Date:2020/07/03
Page Number:226
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht