The role of Ataxin-2 in metabolism and disease

  • Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative movement disorder caused by expansion of CAG repeats in the ATXN2 gene beyond 33 units, while healthy individuals carry 22-23 repeats. First symptoms of SCA2 include uncoordinated movement, ataxic gait and slowing of the saccadic eye movements in line with the early pronounced atrophy of cerebellum, spinal cord and brainstem. Cerebellar Purkinje cells and spinal cord motor neurons are the most affected cells from ATXN2 expansions. Later on, patients manifest distal amyotrophy, problems in breathing and swallowing, depression and cognitive decline caused by widespread degeneration throughout the brain. The striking loss of mass in the brain, due to severe myelin fat atrophy, is accompanied by a similar reduction in the peripheral fat stores. After the devastating progression of disease, the severity and duration of which depends on the CAG repeat size, genetic background and environmental factors, patients succumb to SCA2 mostly because of respiratory failure at the terminal stage. Larger repeat sizes lead to an earlier manifestation of the disease and a more rapid progression. Aside from SCA2, intermediate-length and short pathogenic CAG expansions in ATXN2 between 26-39 repeats significantly increase the risk of developing other neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS), fronto-temporal lobar dementia (FTLD) or Parkinson plus tauopathies like progressive supranuclear palsy (PSP) in various cohorts across the world. Ataxin-2 (ATXN2) is a ubiquitously expressed cytosolic protein most famous for its involvement in neurodegenerative disease caused by the expanded poly-glutamine (polyQ) domain corresponding to a genomic (CAG)n tract. This N-terminal polyQ domain has no known function, other than increasing the aggregation propensity of mutant ATXN2 and facilitating interaction with other polyQ containing proteins, leading to their sequestration. The progressive accumulation of ATXN2 into cytosolic foci, and also that of its interaction partners over time, underlies the molecular pathomechanism. Next to polyQ domain, ATXN2 also contains a Like-Sm domain (Lsm), an Lsm-associated domain (LsmAD), multiple proline-rich domains (PRD) and a Poly(A)-Binding-Protein (PABP)-interacting motif (PAM2). Through its Lsm/LsmAD domains, ATXN2 directly binds to a large number of transcripts, regulating their quality and translation rate. In a similar fashion, through its direct interaction with PABP via PAM2 motif, ATXN2 indirectly modifies the fate of even larger number of transcripts and global translation. Several PRDs scattered across the protein help ATXN2 associate with growth factor receptors and other endocytosis factors, modulating nutrient uptake and downstream signaling. ATXN2 is a stress response factor. Therefore, its involvement in nutrient uptake plays a crucial part in cell’s capability to overcome non-permissive conditions. Upon nutrient deprivation, oxidative stress, proteotoxicity, heat stress or Ca2+ imbalance, ATXN2 relocalizes into cytosolic ribonucleoprotein particles known as stress granules (SGs), together with PABP, several eukaryotic translation initiation factors, many other RNA-binding proteins (RBP) with their target transcripts and the small ribosomal subunit. Collectively, they modulate the stability of the trapped transcripts, favoring the maturation and translation of IRES-dependent stress response proteins instead, according to the specific need. Many RBPs interact either directly or in an RNA-dependent manner in the SGs, and due to the large number of ALS-causing mutations identified in them (such as TDP-43, FUS, TIA-1, hnRNPA2/B1), SGs became a hot topic in neuropathology. Acute SGs serve to halt translation and growth, and to spend energy only for survival until stress disappears. However, chronic SG assembly eventually activates apoptotis leading to cell death. While the polyQ expansions in ATXN2 enhance SG stability, reduce their dissociation rate after stress, and lead to aberrant post-translational modifications of other SG components like TDP-43, complete loss of ATXN2 delays SG formation and results in easily dissolvable foci. Most of the stressors that induce SG formation eventually converge on energetic deficit. Therefore, it is logical that the ultimate task of SGs is to stop further growth when it cannot be afforded. In yeast, the molecular mechanism underlying this growth arrest was explained as sequestration of the master growth regulator complex, Target-of-Rapamycin Complex 1 (TORC1), into SGs in an ATXN2-dependent manner. The repressor effect of ATXN2 on mammalian TORC1 (mTORC1) and global protein translation had already been documented in earlier studies; complete loss of ATXN2 function in knock-out mouse (Atxn2-KO) resulted in mTORC1 hyperactivity and transcriptional upregulation of multiple ribosomal subunits indicating an increased need for these machines. ...

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Nesli Ece ŞenGND
URN:urn:nbn:de:hebis:30:3-593679
Referee:Jörg SoppaORCiD, Georg AuburgerORCiDGND
Advisor:Georg Auburger
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2021/04/15
Year of first Publication:2020
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/03/30
Release Date:2021/05/14
Page Number:122
HeBIS-PPN:479268452
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht