EGR-mediated relapse mechanisms in infant t(4;11) acute lymphoblastic leukemia

  • KMT2A-rearrangements are causative for 70-80% all infant acute lymphoblastic leukemias (Pieters et al., 2019, 2007). Among these, the translocation t(4;11)(q21;23) generating the oncogenic fusion genes KMT2A::AFF1 and AFF1::KMT2A is the most frequent one, accounting for almost every second case of KMT2A-r infant ALL (Meyer et al., 2018). Despite passing a multimodal chemotherapy, 64% of patients achieve an event including relapse or death within four years from diagnosis, and overall survival three years from relapse remains poor with only 17% (Driessen et al., 2016; Pieters et al., 2019, 2007). Vari-ous studies have shown that relapse and therapy resistance were not mediated by chemotherapy-induced mutagenesis as there was no accumulation of secondary mutations in the dominant leukemic clone between diagnosis and relapse (Agraz-Doblas et al., 2019; Andersson et al., 2015; Bardini et al., 2011; Dobbins et al., 2013; Driessen et al., 2013; Mullighan et al., 2007). Intriguingly, exclusively infant t(4;11) ALL patients were reported to subdivide in two groups depending on the level of HOXA gene cluster expression (Trentin et al., 2009). The HOXAlo group displayed a high expression of IRX1 and the HOXAhi group a low expression of IRX1 (Symeonidou and Ottersbach, 2021; Trentin et al., 2009). Importantly, the HOXAlo/IRX1hi group was characterized to possess a strongly ele-vated relapse incidence compared to the HOXAhi/IRX1lo group (Kang et al., 2012; Stam et al., 2010). IRX1 was identified to upregulate the Early growth response genes EGR1, EGR2 and EGR3 (Kühn et al., 2016). The doctoral project “EGR-mediated relapse mechanisms in infant t(4;11) acute lymphoblastic leuke-mia” aimed to investigate a potential correlation between the HOXAlo-IRX1-EGR axis and relapse development in infant t(4;11) ALL. The primary objective was to clarify through which molecular mechanism(s) relapse development despite continuous chemotherapy could be achieved. In this context, the role of the EGR genes has been investigated. In addition, this project aimed to disclose molecular targets which could offer novel therapeutic interventions to interfere with therapy resistance and relapse formation.

Download full text files

Export metadata

Metadaten
Author:Marius KülpORCiDGND
URN:urn:nbn:de:hebis:30:3-707360
DOI:https://doi.org/10.21248/gups.70736
Place of publication:Frankfurt am Main
Referee:Rolf MarschalekORCiDGND, Robert FürstORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2022/10/31
Date of first Publication:2022/10/31
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2022/10/27
Release Date:2022/11/08
Tag:Leukemia
Page Number:110
Last Page:97
HeBIS-PPN:501306986
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht