- Motivated by reports of metallic behavior in the recently synthesized RuI3, in contrast to the Mott-insulating nature of the actively discussed α-RuCl3, as well as RuBr3, we present a detailed comparative analysis of the electronic and magnetic properties of this family of trihalides. Using a combination of first-principles calculations and effective-model considerations, we conclude that RuI3, similarly to the other two members, is most probably on the verge of a Mott insulator, but with much smaller magnetic moments and strong magnetic frustration. We predict the ideal pristine crystal of RuI3 to have a nearly vanishing conventional nearest-neighbor Heisenberg interaction and to be a quantum spin liquid candidate of a possibly different kind than the Kitaev spin liquid. In order to understand the apparent contradiction to the reported resistivity ρ, we analyze the experimental evidence for all three compounds and propose a scenario for the observed metallicity in existing samples of RuI3. Furthermore, for the Mott insulator RuBr3, we obtain a magnetic Hamiltonian of a similar form to that in the much-discussed α-RuCl3 and show that this Hamiltonian is in agreement with experimental evidence in RuBr3.