• Treffer 1 von 1
Zurück zur Trefferliste

A general homeostatic principle following lesion induced dendritic remodeling

  • Introduction: Neuronal death and subsequent denervation of target areas are hallmarks of many neurological disorders. Denervated neurons lose part of their dendritic tree, and are considered "atrophic", i.e. pathologically altered and damaged. The functional consequences of this phenomenon are poorly understood. Results: Using computational modelling of 3D-reconstructed granule cells we show that denervation-induced dendritic atrophy also subserves homeostatic functions: By shortening their dendritic tree, granule cells compensate for the loss of inputs by a precise adjustment of excitability. As a consequence, surviving afferents are able to activate the cells, thereby allowing information to flow again through the denervated area. In addition, action potentials backpropagating from the soma to the synapses are enhanced specifically in reorganized portions of the dendritic arbor, resulting in their increased synaptic plasticity. These two observations generalize to any given dendritic tree undergoing structural changes. Conclusions: Structural homeostatic plasticity, i.e. homeostatic dendritic remodeling, is operating in long-term denervated neurons to achieve functional homeostasis.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasserangaben:Steffen Platschek, Hermann CuntzORCiDGND, Mario Vuksic, Thomas DellerORCiDGND, Peter JedličkaORCiDGND
URN:urn:nbn:de:hebis:30:3-416783
DOI:https://doi.org/10.1186/s40478-016-0285-8
ISSN:2051-5960
Pubmed-Id:https://pubmed.ncbi.nlm.nih.gov/26916562
Titel des übergeordneten Werkes (Englisch):Acta Neuropathologica Communications
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Datum der Veröffentlichung (online):25.02.2016
Datum der Erstveröffentlichung:25.02.2016
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Datum der Freischaltung:17.10.2016
Freies Schlagwort / Tag:Backpropagating action potential; Compartmental modeling; Computer simulation; Electrotonic analysis; Granule cell; Homeostatic plasticity; Morphological modeling; Voltage attenuation
Jahrgang:4
Ausgabe / Heft:19
Seitenzahl:11
Erste Seite:1
Letzte Seite:11
Bemerkung:
© 2016 Platschek et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
HeBIS-PPN:399785353
Institute:Medizin / Medizin
Wissenschaftliche Zentren und koordinierte Programme / Frankfurt Institute for Advanced Studies (FIAS)
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung 4.0