The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 62 of 66
Back to Result List

Extended interaction networks with HCV protease NS3-4A substrates explain the lack of adaptive capability against protease inhibitors

  • Inhibitors against the NS3-4A protease of hepatitis C virus (HCV) have proven to be useful drugs in the treatment of HCV infection. Although variants have been identified with mutations that confer resistance to these inhibitors, the mutations do not restore replicative fitness and no secondary mutations that rescue fitness have been found. To gain insight into the molecular mechanisms underlying the lack of fitness compensation, we screened known resistance mutations in infectious HCV cell culture with different genomic backgrounds. We observed that the Q41R mutation of NS3-4A efficiently rescues the replicative fitness in cell culture for virus variants containing mutations at NS3-Asp168. To understand how the Q41R mutation rescues activity, we performed protease activity assays complemented by molecular dynamics simulations, which showed that protease-peptide interactions far outside the targeted peptide cleavage sites mediate substrate recognition by NS3-4A and support protease cleavage kinetics. These interactions shed new light on the mechanisms by which NS3-4A cleaves its substrates, viral polyproteins and a prime cellular antiviral adaptor protein, the mitochondrial antiviral signaling protein MAVS. Peptide binding is mediated by an extended hydrogen-bond network in NS3-4A that was effectively optimized for protease-MAVS binding in Asp168 variants with rescued replicative fitness from NS3-Q41R. In the protease harboring NS3-Q41R, the N-terminal cleavage products of MAVS retained high affinity to the active site, rendering the protease susceptible for potential product inhibition. Our findings reveal delicately balanced protease-peptide interactions in viral replication and immune escape that likely restrict the protease adaptive capability and narrow the virus evolutionary space.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Georg DultzORCiDGND, Tetsuro Shimakami, Markus Schneider, Kazuhisa MuraiORCiD, Daisuke Yamane, Antoine MarionORCiD, Tobias M. Zeitler, Claudia Stross, Christian GrimmGND, Rebecca M. RichterORCiD, Katrin Bäumer, MinKyung YiORCiD, Ricardo M. BiondiORCiDGND, Stefan ZeuzemORCiDGND, Robert TampéORCiDGND, Iris AntesGND, Christian LangeGND, Christoph WelschORCiDGND
URN:urn:nbn:de:hebis:30:3-776932
DOI:https://doi.org/10.1074/jbc.RA120.013898
ISSN:0021-9258
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/32747444
Parent Title (English):Journal of biological chemistry
Publisher:American Society for Biochemistry and Molecular Biology Publications
Place of publication:Bethesda, Md
Document Type:Article
Language:English
Date of Publication (online):2021/01/04
Date of first Publication:2020/08/03
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/04/10
Tag:adaptation; drug resistance; evolution; hepatitis C virus (HCV); mitochondrial antiviral signaling protein (MAVS); molecular adaptation; molecular biology; molecular dynamics; protease inhibitor; replicative fitness; resistance mutation; serine protease (NS3-4A); structure constraints
Volume:295.2020
Issue:40
Page Number:13
First Page:13862
Last Page:13874
Institutes:Medizin
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International