• search hit 10 of 15
Back to Result List

The complement system in zebrafish tissue regeneration

  • Bei den meisten erwachsenen Säugetieren führt ein Herzinfarkt zu Fibrose und Verlust von funktionellem Herzgewebe. Einige Wirbeltiere, wie der Zebrabärbling, besitzen jedoch die bemerkenswerte Fähigkeit, nach einer Schädigung ihres Herzgewebes verlorenes Gewebe zu regenerieren und so schädliche Folgen zu verhindern. Die lokale Immunantwort auf eine Verletzung wird zunehmend als eine wichtige Determinante für das regenerative Potential eines Gewebes gesehen. Das Komplementsystem ist Teil des humoralen Immunsystems. Historisch ist es als eine Sammlung von Protein bekannt, den Komplementkomponenten, die in der Leber synthetisiert werden und im Blutkreislauf zirkulieren. Bei Exposition gegenüber einem Auslöser, wie z. B. einem Pathogen, wird eine Komplementkomponentproteinspaltungskaskade initiiert, die dazu führen kann, dass Immunzellen rekrutiert werden, und, dass die Phagozytose erleichtert, ggf. die Zielzelle lysiert wird. Studien legen nahe, dass das Komplementsystem an zellulären Prozessen beteiligt sei, die für Entwicklungs- und Krankheitsprozesse entscheidend sind, wie etwa Proliferation und Dedifferenzierung. Es gibt Hinweise, dass das Komplementsystem eine Rolle bei Krebserkrankungen und bei regenerativen Prozessen spielen könnte. In verschiedenen Arten wurde eine lokale verletzungsinduzierte Expression von komplementkomponentkodierenden Genen in regenerierendem Gewebe beobachtet. Einzelne Studien legen nahe, dass Funktionsverlust einzelner Komplementkomponenten regenerative Prozesse beeinträchtigt. Offene Fragen bleiben jedoch: Ist die lokale Expression von mehreren komplementkomponentkodierenden Genen ein Merkmal von regenerierendem Gewebe, das sie von Geweben unterscheidet, welchem die Fähigkeit zur Regeneration fehlt? Und welche Rolle könnte das Komplementsystem und seine Komponenten während des regenerativen Prozesses spielen? Um diesen Fragen nachzugehen, wurde eine Expressionsanalyse von Zebrabärblingsgewebe nach Verletzung mittels RT-qPCR und in situ Hybridisierung durchgeführt: kardiale Kryoverletzung, Larvenrumpfamputation und Schwanzflossenamputation. Ich beobachtete, dass mehrere komplementkomponentkodierende Gene in diesen Geweben nach Verletzung induziert wurden. Die Interpretation veröffentlichter single cell RNAseq Datensätze legt nahe, dass diese komplementkomponentenkodierenden Gene von verschiedenen Zelltypen exprimiert werden, darunter Immunzellen, Epikardzellen und Fibroblasten. Um transkriptionelle Unterschiede zwischen regenerierendem und nicht regenerierendem Gewebe zu identifizieren, verwendete ich ein nicht regeneratives Zebrabärblingmodell, die il11ra- Mutante. Dieser Mutante fehlt die Fähigkeit, verschiedene Organe zu regenerieren, das ist der Fall beim Herzen, dem larvalen Rumpf, und der Schwanzflosse. Ich stellte fest, dass die Mehrheit der verletzungsinduzierten komplementkomponentkodierenden Gene il11ra nachgeschaltet war. Darüber hinaus zeigten Experimente unter Verwendung chemischer Inhibitoren, dass speziell die Expression der komplementkomponentkodierenden Gene c3a.1, c4b und c7a im Larvenrumpfamputationsmodell durch den Il11-Stat3-Signalweg moduliert wird. Zur Klärung der Frage, ob das Komplementsystem und/ oder seine Komponenten eine Rolle während der Regeneration spielen, wurden verschiede Funktionsverlustmodelle generiert und im larvalen Rumpfamputationsmodell auf mögliche Aberrationen getestet. Zum einen generierte ich Überexpressionslinien von endogenen Inhibitoren der Komplementproteinspaltungskaskade. Überexpression eines etablierten Komplementsysteminhibitors rca2.1/ tecrem führte zu einer im Vergleich zu Wildtyp- Geschwistern verringerten Regeneration des larvalen Rumpfs. Zum anderen generierte ich Funktionsverlustmutanten von individuellen Komplementkomponenten durch CRISPR/Cas9 vermittelter Mutagenese, und zwar für masp1, masp2, cfd, c1s, c4b, c5 und c9. Die larvale Rumpfregeneration war in diesen Mutanten unauffällig. Allerdings zeigten c4b Mutanten eine verringerte Kardiomyozytenproliferation und eine differenzielle Expression von einigen Markergenen, einschließlich einer erhöhten Expression von inflammatorischen Zytokinen. Meine Studien führten zu neuen Einblicken in das Komplementsystem im Kontext der Regeneration. Ich fand heraus, dass mehrere komplementkomponentenkodierenden Gene in regenerierendem Zebrabärblinggewebe exprimiert werden, und zwar im Herzgewebe, im larvalen Rumpf und in der adulten Flosse. Darüber hinaus zeige ich, dass die verletzungsinduzierte Expression von komplementkodierenden Genen in regenerierendem Gewebe dem Regenerationsmasterregulator il11ra nachgeschaltet ist. Speziell c3a.1, c4b und c7a wurden durch il11/ stat3 reguliert...

Download full text files

Export metadata

Metadaten
Author:Leonie KellerGND
URN:urn:nbn:de:hebis:30:3-749835
DOI:https://doi.org/10.21248/gups.74983
Place of publication:Frankfurt am Main
Referee:Didier Y. R. StainierORCiD, Virginie LecaudeyORCiDGND
Advisor:Didier Y. R. Stainier, Virginie Lecaudey
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2023/08/04
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2023/06/09
Release Date:2023/09/19
Page Number:187
HeBIS-PPN:511772025
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht