The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 2 of 327
Back to Result List

NMR investigation of structures of G-protein coupled receptor folding intermediates

  • Folding of G-protein coupled receptors (GPCRs) according to the two-stage model (Popot, J. L., and Engelman, D. M. (1990) Biochemistry 29, 4031–4037) is postulated to proceed in 2 steps: partitioning of the polypeptide into the membrane followed by diffusion until native contacts are formed. Herein we investigate conformational preferences of fragments of the yeast Ste2p receptor using NMR. Constructs comprising the first, the first two, and the first three transmembrane (TM) segments, as well as a construct comprising TM1–TM2 covalently linked to TM7 were examined. We observed that the isolated TM1 does not form a stable helix nor does it integrate well into the micelle. TM1 is significantly stabilized upon interaction with TM2, forming a helical hairpin reported previously (Neumoin, A., Cohen, L. S., Arshava, B., Tantry, S., Becker, J. M., Zerbe, O., and Naider, F. (2009) Biophys. J. 96, 3187–3196), and in this case the protein integrates into the hydrophobic interior of the micelle. TM123 displays a strong tendency to oligomerize, but hydrogen exchange data reveal that the center of TM3 is solvent exposed. In all GPCRs so-far structurally characterized TM7 forms many contacts with TM1 and TM2. In our study TM127 integrates well into the hydrophobic environment, but TM7 does not stably pack against the remaining helices. Topology mapping in microsomal membranes also indicates that TM1 does not integrate in a membrane-spanning fashion, but that TM12, TM123, and TM127 adopt predominantly native-like topologies. The data from our study would be consistent with the retention of individual helices of incompletely synthesized GPCRs in the vicinity of the translocon until the complete receptor is released into the membrane interior.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Martin PomsORCiD, Philipp Ansorge, Luis Martinez-GilORCiD, Simon JurtORCiDGND, Daniel GottsteinGND, Katrina E. Fracchiolla, Leah S. CohenORCiD, Peter GüntertORCiDGND, Ismael MingarroORCiD, Fred NaiderORCiD, Oliver ZerbeORCiDGND
URN:urn:nbn:de:hebis:30:3-772881
DOI:https://doi.org/10.1074/jbc.M116.740985
ISSN:0021-9258
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/27864365
Parent Title (English):Journal of biological chemistry
Publisher:American Society for Biochemistry and Molecular Biology Publications
Place of publication:Bethesda, Md
Document Type:Article
Language:English
Date of Publication (online):2021/01/04
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/03/14
Tag:G protein-coupled receptor (GPCR); Ste2p; Topology; membrane protein; nuclear magnetic resonance (NMR); protein folding; structural biology
Volume:291.2016
Issue:53
Page Number:17
First Page:27170
Last Page:27186
Institutes:Biowissenschaften
Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Wissenschaftliche Zentren und koordinierte Programme / Zentrum für Biomolekulare Magnetische Resonanz (BMRZ)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International