• search hit 3 of 204
Back to Result List

What are the drivers of microplastic toxicity? Comparing the toxicity of plastic chemicals and particles to Daphnia magna

  • Highlights • PUR, PVC and PLA microplastics affect life-history parameters of Daphnia magna. • Natural kaolin particles are less toxic than microplastics. • Microplastic toxicity is material-specific, e.g. PVC is most toxic on reproduction. • In case of PVC, plastic chemicals are the main driver of microplastic toxicity. • PLA bioplastics are similarly toxic as conventional plastics. Abstract Given the ubiquitous presence of microplastics in aquatic environments, an evaluation of their toxicity is essential. Microplastics are a heterogeneous set of materials that differ not only in particle properties, like size and shape, but also in chemical composition, including polymers, additives and side products. Thus far, it remains unknown whether the plastic chemicals or the particle itself are the driving factor for microplastic toxicity. To address this question, we exposed Daphnia magna for 21 days to irregular polyvinyl chloride (PVC), polyurethane (PUR) and polylactic acid (PLA) microplastics as well as to natural kaolin particles in high concentrations (10, 50, 100, 500 mg/L, ≤ 59 μm) and different exposure scenarios, including microplastics and microplastics without extractable chemicals as well as the extracted and migrating chemicals alone. All three microplastic types negatively affected the life-history of D. magna. However, this toxicity depended on the endpoint and the material. While PVC had the largest effect on reproduction, PLA reduced survival most effectively. The latter indicates that bio-based and biodegradable plastics can be as toxic as their conventional counterparts. The natural particle kaolin was less toxic than microplastics when comparing numerical concentrations. Importantly, the contribution of plastic chemicals to the toxicity was also plastic type-specific. While we can attribute effects of PVC to the chemicals used in the material, effects of PUR and PLA plastics were induced by the mere particle. Our study demonstrates that plastic chemicals can drive microplastic toxicity. This highlights the importance of considering the individual chemical composition of plastics when assessing their environmental risks. Our results suggest that less studied polymer types, like PVC and PUR, as well as bioplastics are of particular toxicological relevance and should get a higher priority in ecotoxicological studies.
Metadaten
Author:Lisa ZimmermannORCiDGND, Sarah Göttlich, Jörg OehlmannORCiDGND, Martin WagnerORCiDGND, Carolin VölkerORCiDGND
URN:urn:nbn:de:hebis:30:3-776893
DOI:https://doi.org/10.1016/j.envpol.2020.115392
ISSN:0269-7491
Parent Title (English):Environmental pollution
Publisher:Elsevier
Place of publication:Amsterdam
Document Type:Article
Language:English
Date of Publication (online):2020/08/29
Date of first Publication:2020/08/19
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2024/03/06
Volume:267.2020
Issue:115392
Article Number:115392
Page Number:10
Institutes:Biowissenschaften
Angeschlossene und kooperierende Institutionen / Institut für sozial-ökologische Forschung (ISOE)
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
3 Sozialwissenschaften / 33 Wirtschaft / 333 Boden- und Energiewirtschaft / 333.7 Natürliche Ressourcen, Energie und Umwelt
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 4.0