The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 9 of 1590
Back to Result List

Inducible mRNA degradation tools to study transcriptional adaptation in mammalian systems

  • Discrepancies between knockdown and knockout animal model phenotypes have long stood as a perplexing phenomenon. Several mechanisms explaining such observations have been proposed, namely the toxicity or the off-target effects of the knockdown reagents, as well as, in certain cases, genetic robustness – an organism's ability to maintain its phenotype despite genetic perturbations. In addition to these explanations, transcriptional adaptation (TA), a phenomenon defined as an event whereby a mutation in one gene leads to transcriptional upregulation or downregulation of another, adapting, gene or genes expression, has been recently proposed as an alternative explanation for the conflicting knockdown and knockout phenotype paradox. Since its discovery in 2015, TA's precise mechanism remains a subject of ongoing research. Majority of evidence suggests that mutant mRNA degradation plays a central in TA. Epigenetic remodeling is also thought to play a role, as evidenced by an increase in active histone marks at the transcription start sites of the adapting genes. Whether mRNA degradation is indeed the key player in TA remains debated. Furthermore, it is still unknown how exactly TA develops, what adapting genes it targets, and whether genomic mutations that render mutant mRNA sensitive to degradation are required for TA to occur. Throughout the experiments described in this Dissertation, I have designed an inducible TA system where TA can be triggered on demand and its effects on the cell’s transcriptome followed through time. I have demonstrated that degradation-prone transgenes, once induced and expressed, can be efficiently degraded, resulting in the protein loss-independent upregulation of adapting genes via TA. Adapting genes with higher degree of sequence similarity become upregulated faster than genes with lower degree of sequence similarity. Further functionality of this approach to study TA is limited by the leakiness of the inducible gene expression system; however, constitutively expressed degradation-prone transgenes were used to demonstrate TA in human cells. In addition, I have developed an approach to target wild-type cytoplasmic mRNAs without altering the cell’s genome and reported a TA-like phenomenon, which manifested as adapting gene upregulation not relying on mutations in other genes. Cytoplasmic mRNA cleavage with CRISPR-Cas13d triggered a TA-like response in three different gene models: Actg1 knockdown, Ctnna1 knockdown, and Nckap1 knockdown. After comparing two different modes of triggering TA, CRISPR-Cas9 knockout versus CRISPR-Cas13d knockdown, I reported little overlap between the dysregulated genes and suggested that diverse mRNA degradation modes led to distinct TA responses. In addition, the transcriptional increase of Actg2 caused by CRISPR-Cas13d-mediated Actg1 mRNA cleavage did not require chromatin accessibility changes. Experiments and genetic tools described in this dissertation investigated how TA develops from its earliest onset, how it affects the global transcriptome of the cell, as well as provided compelling evidence for an mRNA degradation-central TA mechanism. I have created tools to study both direct and indirect TA gene targets and unveiled important insights into the temporal dynamics of TA. Genes with higher sequence similarity were found to be upregulated more rapidly than those with lower similarity. Furthermore, it was revealed that the epigenetic properties of TA responses vary depending on the triggering mechanism. Cas13d-mediated degradation of wild-type mRNAs led to immediate transcriptional enhancement independent of epigenetic changes, which stood in contrast to previously measured alterations in chromatin accessibility in CRISPR-Cas9 mutants. This research has thus significantly advanced our knowledge of TA and provided valuable tools and findings that contribute to the broader understanding of gene expression regulation in response to mRNA degradation.

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Gabrielius JakutisORCiDGND
URN:urn:nbn:de:hebis:30:3-832202
DOI:https://doi.org/10.21248/gups.83220
Place of publication:Frankfurt am Main
Referee:Didier Y. R. StainierORCiD, Ingo EbersbergerORCiDGND
Advisor:Didier Y. R. Stainier
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/04/02
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/03/15
Release Date:2024/04/02
Page Number:143
HeBIS-PPN:516756915
Institutes:Biowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International