• search hit 41 of 29188
Back to Result List

Functional renormalization group approach to quantum Heisenberg paramagnets

  • This thesis is concerned with the investigation of static and dynamic properties of quantum Heisenberg paramagnets in the absence of a magnetic field and therefore for vanishing magnetization. For this purpose a new formulation of the spin functional renormalization group (SFRG) is employed. The first manifestations of the SFRG were developed by Krieg and Kopietz, motivated by the FRG approach to ordinary field theories and the older works of Vaks, Larkin and Pikin on diagrammatic methods for spin operators. The main idea is to study quantum spin systems by considering the evolution of correlation functions under a continuous deformation of the interaction between magnetic moments, starting from a solvable limit. This leads to nonperturbative results for quantities like the spin-spin correlation function. After a basic introduction to the phenomena and concomitant problems discussed in this thesis, a detailed description of the SFRG method in its initial formulation is given in the second chapter. We start with the generating functional of connected imaginary-time spin-correlation functions GΛ [h], for which an exact flow equation is derived. A particular issue, already pointed out by Krieg and Kopietz, arises here, namely the singular non-interacting limit of its subtracted Legendre transform ΓΛ [m]. As a consequence the initial condition of that functional does not have a proper series expansion in powers of m. This prevents us from working directly within a pure one-particle irreducible (1-PI) parametrization of the correlation functions, as is often done in the context of field theories. Thus motivated, we develop a workaround explicitly tailored to paramagnets, which provides us with a functional that has a well-behaved Legendre transform. The new approach is based on a different treatment of fluctuations at zero and finite frequencies, analogous to a previous hybrid formulation for the symmetry-broken phase. Certain properties, considered to be highly relevant for isotropic paramagnets, as well as previous observations, already made in the study of simpler spin systems like the Ising model, serve as additional justifications for choosing this construction. In the third chapter our new method is assessed by calculating the dynamic susceptibility G(k, iω) and thus the dynamic structure factor S(k, ω) in the symmetric phase. For this purpose an approximate integral equation for the dynamic polarization function Π̃(k, iω) was derived. This equation results from a truncation of the hierarchy of flow equations and contains static quantities, that are assumed to be known from another source. Our first application is the high-temperature limit T → ∞ in d ≤ 3 dimensions. Salient features, believed to be part of the spin dynamics in isotropic Heisenberg magnets are also exhibited by our solution, like (anomalous) diffusion in a suitable hydrodynamic limit. Moreover we obtain the same order of magnitude for the diffusion coefficient D as in experiments and other theoretical calculations. Other aspects do not entirely agree with previous approaches. Afterwards we continue by investigating systems close to the critical point Tc. Dynamic scaling forms for Π̃(k, iω) and S(k, ω), which, like spin diffusion, are postulated on the basis of quite general physical arguments, are reproduced. Agreement of the line-shapes 2with neutron scattering experiments at T = Tc is found to be satisfying, with deviations for ω → 0, that may be attributed to the simplicity of the approximation, like at infinite temperature. Finally, we focus our attention on the thermodynamic properties of isotropic Heisenberg paramagnets by calculating the static susceptibility G(k). For this purpose we employ simple truncation schemes of the flow equations for the static self-energy ΣΛ (k) and four-spin vertex ΓΛ , together with a basic ansatz for the dynamic polarization Π̃(k, iω) in quantum systems. As a result we obtain transition temperatures Tc of three-dimensional nonfrustrated magnets within an accuracy of 5 percent compared to established benchmark values from Quantum Monte Carlo and high temperature expansion series. We conclude this chapter by giving an outlook on the application of our method to frustrated systems, which may require a combined non-trivial calculation of static and dynamic properties.

Download full text files

Export metadata

Metadaten
Author:Dmytro TarasevychORCiDGND
URN:urn:nbn:de:hebis:30:3-861226
DOI:https://doi.org/10.21248/gups.86122
Place of publication:Frankfurt am Main
Referee:Peter KopietzORCiDGND, Oleksandr TsyplyatyevGND, Johannes ReutherORCiD
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2024/07/11
Year of first Publication:2023
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2024/06/24
Release Date:2024/07/11
Page Number:212
HeBIS-PPN:519748328
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht