Comparison of chemical characteristics of 495 biomass burning plumes intercepted by the NASA DC-8 aircraft during the ARCTAS/CARB-2008 field campaign

  • This paper compares measurements of gaseous and particulate emissions from a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS-2008 experiment: ARCTAS-A, based out of Fairbanks, Alaska, USA (3 April to 19 April 2008); ARCTAS-B based out of Cold Lake, Alberta, Canada (29 June to 13 July 2008); and ARCTAS-CARB, based out of Palmdale, California, USA (18 June to 24 June 2008). Approximately 500 smoke plumes from biomass burning emissions that varied in age from minutes to days were segregated by fire source region and urban emission influences. The normalized excess mixing ratios (NEMR) of gaseous (carbon dioxide, acetonitrile, hydrogen cyanide, toluene, benzene, methane, oxides of nitrogen and ozone) and fine aerosol particulate components (nitrate, sulfate, ammonium, chloride, organic aerosols and water soluble organic carbon) of these plumes were compared. A detailed statistical analysis of the different plume categories for different gaseous and aerosol species is presented in this paper. The comparison of NEMR values showed that CH4 concentrations were higher in air-masses that were influenced by urban emissions. Fresh biomass burning plumes mixed with urban emissions showed a higher degree of oxidative processing in comparison with fresh biomass burning only plumes. This was evident in higher concentrations of inorganic aerosol components such as sulfate, nitrate and ammonium, but not reflected in the organic components. Lower NOx NEMRs combined with high sulfate, nitrate and ammonium NEMRs in aerosols of plumes subject to long-range transport, when comparing all plume categories, provided evidence of advanced processing of these plumes.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Arsineh Hecobian, Zhen Liu, Christopher J. Hennigan, L. Gregory Huey, Jose Luis Jimenez, Michael J. Cubison, Stephanie Vay, Glenn S. Diskin, Glen W. Sachse, Armin Wisthaler, Tomas Mikoviny, Andrew J. Weinheimer, Jin Liao, David J. Knapp, Paul O. Wennberg, Christoph Andreas KürtenORCiDGND, John D. Crounse, Jason M. St. Clair, Yuxuan Wang, Rodney J. Weber
URN:urn:nbn:de:hebis:30:3-267779
DOI:https://doi.org/10.5194/acp-11-13325-2011
ISSN:1680-7324
Parent Title (English):Atmospheric chemistry and physics, 11.2011, S. 13325-13337
Publisher:European Geosciences Union
Place of publication:Katlenburg-Lindau
Document Type:Article
Language:English
Date of Publication (online):2011/12/22
Date of first Publication:2011/12/22
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2012/10/15
Volume:11
Page Number:13
First Page:13325
Last Page:13337
Note:
© Author(s) 2011. This work is distributed under the Creative Commons Attribution 3.0 License.
HeBIS-PPN:358311756
Institutes:Geowissenschaften / Geographie / Geowissenschaften
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 55 Geowissenschaften, Geologie / 550 Geowissenschaften
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - Namensnennung 3.0