Control system for the FRANZ facility

  • In der Experimentierhalle der Physik am Campus Riedberg der Goethe – Universität wird gegenwärtig die Beschleunigeranlage FRANZ aufgebaut. FRANZ steht für Frankfurter Neutronenquelle am Stern-Gerlach-Zentrum. Die Anlage bietet vielfältige Experimentiermöglichkeiten in der Untersuchung intensiver, gepulster Protonenstrahlen. Ein Forschungsschwerpunkt an den sekundären Neutronenstrahlen sind Messungen zur nuklearen Astrophysik. Die Neutronen werden durch einen 2 MeV Protonenstrahl mittels der Reaktion 7Li (p, n) 7Be erzeugt. Die geplanten Experimente erfordern sowohl eine hier weltweit erstmals realisierte Pulsrepetitionsrate von bis zu 250 kHz bei Pulsströmen im 100 mA – Bereich als auch eine extreme Pulskompression auf eine Nanosekunde bei dann auftretenden Pulsströmen im Ampere – Bereich. Daneben ist auch ein Dauerstrich – Strahlbetrieb im mA – Strombereich möglich. Auch viele einzelne Beschleunigerkomponenten wie die Ionenquelle, der Chopper zur Pulsformung, die hochfrequent gekoppelte RFQ-IH-Kombination, der Rebuncher in Form einer CH – Struktur und der Bunchkompressor sind Neuentwicklungen. Mittlere Strahlleistungen von bis zu 24 kW treten im Niederenergiestrahltransportbereich auf, da die Ionenquelle grundsätzlich im Dauerstrich zu betreiben ist, auch bei Hochstrom mit hohen Pulsrepetitionsraten. Der Personen- und Geräteschutz spielt damit auch eine wesentliche Rolle bei der Auslegung des Kontrollsystems für FRANZ. Der Aufbau von FRANZ und seine wesentlichen Komponenten werden in Kapitel 2 erläutert. Die vielen unterschiedlichen Komponenten wie Hochspannungsbereich, Magneten, Hochfrequenzbauteile und Kavitäten, Vakuumbauteile, Strahldiagnose und Detektoren machen plausibel, dass auch das Kontrollsystem für eine solche Anlage speziell ausgelegt werden muss. In Kapitel 4 werden zum Vergleich die Konzepte zur Steuerung und Regelung aktueller, großer Beschleunigerprojekte aufgezeigt, nämlich für die „European Spallation Source ESS“ und für die „Facility for Antiproton and Ion Research FAIR“. In der vorliegenden Arbeit wurde die Ionenquelle als komplexe Beschleunigerkomponente ausgewählt, um Entwicklungen zur Steuerung und Regelung durchzuführen und zu testen. Zum Anfahren und Betreiben der Ionenquelle wurde ein Flussdiagramm (Abb. 5.15) entwickelt und realisiert. Im Detail wurden Untersuchungen zur Abhängigkeit der Heizkathodenparameter von der Betriebsdauer gemacht. Daraus konnte ein Algorithmus zur Vorhersage eines rechtzeitigen Filamentaustausches abgeleitet werden. Weiterhin konnte die Nachregelung des Kathodenheizstromes automatisiert werden, um damit die Bogenentladungsspannung innerhalb eines Intervalls von ± 0.5 V zu stabilisieren. Das Anfahren des Filamentstroms wurde ebenfalls automatisiert. Dazu wird die Vakuumdruckänderung in Abhängigkeit der Filamentstromerhöhung gemessen, ausgewertet und daraus der nächste erlaubte Stromerhöhungsschritt abgeleitet. Auf diese Weise wird der Betriebszustand schneller und kontrollierter erreicht als bei manuellem Hochfahren. Das Ziel eines unbemannten Ionenquellenbetriebs ist damit näher gerückt. In einem ersten Test zur Komponentensteuerung und zur Datenaufnahme wurde ein Ionenstrahl extrahiert und durch den ersten Fokussierungsmagneten – einen Solenoiden – transportiert. Es wurde der Erregungsstrom des Solenoiden sowie die Strahlenergie automatisch durchgefahren, die Daten abgespeichert und daraus ein Kontourplot zum gemessenen Strahlstrom hinter der Fokussierlinse erstellt (Abb. 5). Die vorliegende Arbeit beschäftigt sich nur mit den „langsamen“ Steuerungs- und Regelungsprozessen, während die schnellen Prozesse im Hochfrequenzregelungssystem unabhängig geregelt werden. Neben der Überwachung des Betriebszustandes aller Komponenten werden auch alle für den Service und die Personensicherheit benötigten Daten weggeschrieben. Das System basiert auf MNDACS (Mesh Networked Data Acquisition and Control System) und ist in JAVA geschrieben. MNDACS besteht aus einem Kernel, welcher die Komponententreiber-Software sowie den Netzwerkserver und das graphische Netzwerkinterface (GUI) betreibt. Weterhin gehört dazu das Driver Abstraction Layer (DAL), welches den Zugang zu weiteren Computern oder zu lokalen Treibern ermöglicht. CORBA stellt die Middleware für Netzwerkkommunikation dar. Dadurch wird Kommunikation mit externer Software geregelt, weiterhin wird die Umlegung von Kommunikation im Fall von Leitungsunterbrechungen oder einem lokalen Computerabsturz festgelegt. Es gibt bei FRANZ zwei Kontrollebenen: Über Ethernet läuft die „High Level Control“ und die Datenverarbeitung. Über die „Low Level Control“ läuft das Interlock – und Sicherheitssystem. Die Netzwerkverbindungen laufen über 1 Gb Ethernet Links, womit ein schneller Austausch auch bei lokalen Netzwerkstörungen noch möglich ist. Um bei Stromausfällen das Computersystem am Laufen zu halten, wurde im Rahmen dieser Arbeit ein „Uninterruptable Power Supply“ UPS beschafft und erfolgreich am Hochspannungsterminal getestet.

Download full text files

  • Suha_Alzubaidi_Dissertation.pdf
    eng

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Suha Alzubaidi
URN:urn:nbn:de:hebis:30:3-424149
Referee:Ulrich RatzingerORCiD, Joachim JacobyGND
Advisor:René Reifarth
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2016/12/02
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/02/29
Release Date:2016/12/02
Page Number:164
Last Page:149
Note:
Diese Dissertation steht außerhalb der Universitätsbibliothek leider (aus urheberrechtlichen Gründen) nicht im Volltext zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden.
HeBIS-PPN:397094132
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoArchivex. zur Lesesaalplatznutzung § 52b UrhG