AICAR inhibits NFκB DNA binding independently of AMPK to attenuate LPS-triggered inflammatory responses in human macrophages

  • 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) is an established pharmacological activator of AMP-activated protein kinase (AMPK). Both, AICAR and AMPK were reported to attenuate inflammation. However, AICAR is known for many AMPK-independent effects, although the mechanisms remain incompletely understood. Here we report a potent suppression of lipopolysaccharide (LPS)-induced inflammatory gene expression by AICAR in primary human macrophages, which occurred independently of its conversion to AMPK-activating 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranosyl monophosphate. Although AICAR did not interfere with activation of cytosolic signalling cascades and nuclear translocation of nuclear factor - κB (NFκB) by LPS, it prevented the recruitment of NFκB and RNA polymerase II to target gene promoters. AICAR also inhibited signal transducer and activator of transcription 3 (STAT3)-dependent induction of interleukin (IL) IL-6 and IL-10 targets, while leaving STAT6 and HIF1α-dependent gene expression in IL-4 and dimethyloxalylgylcine-treated macrophages intact. This points to a transcription factor-specific mode of action. Attenuated gene expression correlated with impaired NFκB and STAT3, but not HIF-binding in electrophoretic mobility shift assays in vitro. Conclusively, AICAR interferes with DNA binding of NFκB and STAT3 to modulate inflammatory responses.

Download full text files

Export metadata

Metadaten
Author:Johannes Kirchner, Bernhard BrüneORCiD, Dmitry Namgaladze
URN:urn:nbn:de:hebis:30:3-465805
DOI:https://doi.org/10.1038/s41598-018-26102-3
ISSN:2045-2322
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/29773845
Parent Title (German):Scientific reports
Publisher:Macmillan Publishers Limited, part of Springer Nature
Place of publication:[London]
Document Type:Article
Language:English
Year of Completion:2018
Date of first Publication:2018/05/17
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2018/06/12
Tag:Cell signalling; Inflammation; Monocytes and macrophages; Transcription
Volume:8
Issue:1, Art. 7801
Page Number:9
First Page:1
Last Page:9
Note:
Rights and permissions: Open Access: This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
HeBIS-PPN:433823488
Institutes:Medizin / Medizin
Wissenschaftliche Zentren und koordinierte Programme / Sonderforschungsbereiche / Forschungskollegs
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Open-Access-Publikationsfonds:Medizin
Licence (German):License LogoCreative Commons - Namensnennung 4.0