Molekulare Mechanismen in mikrobiellen Retinalproteinen

  • In der vorliegenden Arbeit wurden Untersuchungen an zwei verschiedenen Retinalproteinen durchgeführt. Das erste analysierte Retinalprotein, Channelrhodopsin 2, wurde hauptsächlich auf die Beziehung zwischen Retinalisomerisierung und Photozyklus bzw. Funktionalität untersucht. Hierfür wurde das Chromophor all-trans Retinal durch verschiedene, sterisch anspruchsvolle, Retinalanaloga ersetzt. Das 9,12-Phenylretinal wurde bereits in BR erfolgreich eingesetzt, um die Isomerisierung des all-trans Retinals zum 13-cis Retinal in der Bindetasche zu verhindern und die Funktionalität des Proteins zu stoppen. In ChR2 hingegen kann das Phenylretinal nach Lichtanregung isomerisieren und ein Photoprodukt bilden, welches anschließend einen modifizierten Photozyklus durchläuft. In diesen Photozyklus zerfällt das erste Photoprodukt P1' sehr schnell und bildet ein zusätzliches Intermediat, Px, welches zeitlich zwischen dem P1' und P2' Intermediat liegt und eine grundzustandsähnliche Absorptionsbande besitzt. Im Vergleich zum Wildtyp läuft der modifizierte Photozyklus schneller ab als im Wildtyp und das Protein behält seine Funktion. Ein weiteres Retinalanalogon ist das trans-locked Retinal, welches sich als schwierig in das Protein einzubauen erwies. Dies resultierte in zwei verschiedenen Absorptionsbanden, wobei nicht klar war, welche die mit dem korrekt eingebauten Retinal war. Beide Banden wurden in Ultrakurzzeitexperimenten angeregt, hierbei stellte sich heraus, dass die bathochrom verschobene Spezies das korrekt eingebaute Retinal besitzt, da diese auch eine Schwingungsfeinstruktur, wie auch der Wildtyp, zeigt. Das trans-locked Retinal kann ChR2 erfolgreich an der Isomerisierung hindern und zeigt nach dem Zerfall des angeregten Zustandes keine Photoprodukt-Bildung. Bei dem zweiten Retinalprotein, welches in dieser Arbeit untersucht wurde, handelt es sich um Krokinobacter eikaustus rhodopsin 2. Zuerst wird in dieser Arbeit die Primärreaktion des Proteins untersucht. Diese wurde unter verschiedenen Salzbedingungen, welche wichtig für die spätere Funktion des Proteins sind, jedoch auch Einfluss auf die Ultrakurzzeitdynamik des Proteins nehmen, analysiert. Der angeregte Zustand des Proteins zerfällt biexponentiell, wobei die erste Komponente den reaktiven Pfad und die langsamere Komponente den nicht-reaktiven Pfad beschreibt. Der reaktive Pfad bildet innerhalb einiger hundert Femtosekunden das bathochrom verschobene, isomerisierte J Intermediat, welches durch Kühlprozesse auf der unteren Pikosekundenzeitskala in das K Intermediat übergeht. Beim nicht-reaktiven Pfad zerfällt der angeregte Zustand innerhalb einiger Pikosekunden und geht in den Grundzustand über, ohne dass eine Isomerisierung des Retinals stattfindet. Sind Na+ oder K+ Ionen in der Lösung anwesend, sind diese Prozesse gleich schnell. In Abwesenheit dieser Ionen wird der nicht-reaktive Pfad stärker populiert und zerfällt langsamer. Das gleiche salzabhängige Verhalten konnte mit der Mutante H30A gezeigt werden. Die Aminosäure H30 sitzt im Interface zweier Oligomere in der Nähe der extrazellulären Na+ Bindestelle. Durch die Mutation von Histidin zu Alanin, wird das Protein fast ausschließlich zu einer Na+-Pumpe und pumpt kaum noch Protonen. Die Ultrakurzzeitdynamik bleibt jedoch unbeeinflusst davon und unterscheidet sich nicht vom Wildtyp. Neben dem normalen all-trans Retinal wurden auch hier, wie schon für Channelrhodopsin 2, Retinalanaloga im Wildtyp untersucht, hier hauptsächlich unter dem Aspekt der Farbanpassung. Die hier verwendeten Analoga waren das A2 Retinal und das MMA Retinal (MMAR), die beide durch die Erweiterung des -Systems zum Grundzustand rotverschobene Absorptionsspektren aufweisen. Das A2 Retinal besitzt eine weitere Doppelbindung und das MMAR zwei weitere Doppelbindungen im -Jonen Ring im Vergleich zum Retinal. Das MMAR hat zusätzlich noch eine weitere Methylamino-Gruppe. Durch das größere -System hat das MMAR auch die größere Rotverschiebung im Spektrum. Beide Retinalanaloga zeigen sehr breite ESA Banden und isomerisieren nur zu einem geringen Prozentsatz, die Hauptpopulation der angeregten Moleküle geht über den nicht-reaktiven Pfad zurück in den Grundzustand. Der Photozyklus von KR2 wurde ebenfalls untersucht. Hierbei wird unter anderem das Verhalten des Proteins unter verschiedenen pH- und Salzbedingungen analysiert. Hierbei konnte festgestellt werden, dass die Dynamik des Natrium-Pump-Zyklus unabhängig vom pH Wert ist. In einem pH Bereich zwischen 6 und 9.5 ändern sich die Lebenszeiten des Zyklus nicht signifikant, jedoch wird die Amplitude des O Intermediats, welches als Indikator für den (nicht Protonen) Ionentransport genutzt wird, bei niedrigem pH Wert geringer. Die geringere Amplitude weist auf einen geringeren Na+-Transport hin. Dies liegt an der Kompetition der zu transportierenden Ionen, in diesem Fall Na+ und H+. Ist die H+ Konzentration viel höher als die Na+ Konzentration, so fängt das Protein an H+ zu pumpen. Unter physiologischen Bedingungen handelt es sich bei KR2 jedoch um eine reine Na+-Pumpe. Sind Kalium-Ionen bei pH 9.5 anwesend, so zeigt das Protein wie auch beim Natrium-Pump-Zyklus ein starkes O Intermediat, was darauf hindeutet, dass auch K+ transportiert werden kann. Dies konnte von Dr. Janina Sörmann (Arbeitsgruppe Bamberg, MPI für Biophysik Frankfurt) auch in elektrophysiologischen Messungen gezeigt werden. Bisher wurde in der Literatur davon ausgegangen, dass K+ vom Wildtyp nicht transportiert werden kann. Um die Photozyklusdynamik des Natrium-Pumpzyklus besser verstehen zu können, wurde die Temperaturabhängigkeit des Photozkylus mit Hilfe der Target Analysis untersucht. Hierbei stellte sich heraus, dass das simple sequentielle Modell K -> L -> M -> O -> GS die besten Fitresultate liefert, obwohl viele verschiedene Modelle mit Verzweigungen oder Rückraten ebenfalls getestet wurden. Resultat der Target Analysis sind unter anderem die Evolution Associated Difference Spectra (EADS). Diese beinhalten die Differenzspektren der einzelnen Zustände, welche um das Grundzustandsbleichen korrigiert werden können, um die Evolution Associated Spectra (EAS) zu bilden. Durch Entfaltung dieser EAS (auf der Energieskala) konnten die Reinspektren der einzelnen Photointermediate K, L, M und O berechnet werden. Auffällig hierbei war, dass das M Intermediat eine geringere Blauverschiebung als erwartet aufwies, was höchstwahrscheinlich an der Elektrostatik in der Retinal-Bindetasche liegt. Durch die Entfaltung der Spektren konnten ebenfalls die Gleichgewichte, welche zu schnell sind, um in der Target Analysis aufgelöst zu werden, bestimmt werden. Die K, L und M Intermediate stehen, je nach Temperatur, in verschiedenen Gleichgewichten zueinander, während das O Intermediat, keine Gleichgewichte eingeht und nur separiert von den anderen Intermediaten auftaucht. Dies bedeutet, dass sich zwischen M und O Intermediat ein unidirektionaler Schritt im Photozyklus befinden muss. Dieser hängt wahrscheinlich mit dem Na+-Transport zusammen, da das Ion beim Übergang vom M zum O aufgenommen und an der Schiffbase vorbei transportiert werden muss. Um den Photozyklus besser untersuchen zu können, wurde im Rahmen dieser Arbeit eine Anlage zur transienten Blitzlichtphotolyse aufgebaut und die bestehende Breitband-Blitzlichtphotolyse automatisiert und verbessert. Hierfür wurden mithilfe von MATLAB und LABVIEW verschiedene Programme zur Datenakquisition, -verarbeitung und -analyse geschrieben. Für die transiente Blitzlichtphotolyse musste ein Datenreduzierungsprogramm entwickelt werden, um die mehrere Gigabyte großen Datensätze auf eine verarbeitbare Größe, mit gleichzeitiger Verbesserung des Signal-zu-Rausch-Verhältnisses, zu bringen. In der Breitband-Blitzlichtphotolyse konnte ein Pulsverzögerungsgenerator als zentrale Steuereinheit aller Komponenten der Breitband-Blitzlichtphotolyse eingesetzt und programmiert werden, um das Messverfahren zu automatisieren. Anschließend musste noch ein neues Datenverarbeitungsprogramm geschrieben werden, welches die Daten für die anschließende Analyse zusammenstellt und vorbereitet. Die neuen Programme gewähren einen reibungslosen Anschluss an die Analysesoftware OPTIMUS, welche in der Arbeitsgruppe genutzt wird.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Peter EberhardtGND
URN:urn:nbn:de:hebis:30:3-550625
Place of publication:Frankfurt am Main
Referee:Josef WachtveitlORCiDGND, Clemens GlaubitzORCiDGND
Advisor:Josef Wachtveitl
Document Type:Doctoral Thesis
Language:German
Date of Publication (online):2020/06/17
Year of first Publication:2019
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2020/06/03
Release Date:2020/06/26
Page Number:141
HeBIS-PPN:46606991X
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht