Reconstitution and functional characterization of efflux pumps from Escherichia coli

  • Resistant microbes are a growing concern. It was estimated that about 33,000 of people die because of the infections caused by multidrug resistant bacteria each year in Europe (ECDC, 2018, Bacteria can acquire resistance against toxic compounds via different mechanisms and intrinsic active efflux is one of the first mechanisms deployed by bacterial cells. The membrane-localized efflux pumps catalysing this reaction, extract toxic compounds from the interior of the cell and transport these to the outside, thereby maintaining sub-lethal toxin levels in the cytoplasm, periplasm and membranes. Gram-negative three-component efflux pumps, analysed in this study, are composed of an inner membrane protein, a member of the Resistance-Nodulation cell Division (RND) superfamily, an Outer Membrane Factor (OMF) protein and a Membrane Fusion Protein (MFP) that connects the two afore mentioned components into an active efflux pump. The pumps described in this work, AcrAB-TolC and EmrAB-TolC, are drug efflux pumps belonging to the RND and MFS superfamilies, respectively, while CusCBA is an efflux pump that belongs to the RND heavy metal efflux family. Another efflux pump that was used as a model for the design of an in vitro assay for the silver ion transport studies, CopA, belongs to the P-type ATPase superfamily. All pumps analysed in this study are part of the resistance system of Escherichia coli, which is a highly clinically relevant pathogen. In order to examine the AcrAB-TolC, CopA and CusA efflux pumps, the individual components were separately produced in E. coli, purified to monodispersity and reconstituted in large unilamellar vesicles, LUVs. Means for the optimized production and adequate conditions for efficient reconstitution were presented in this study. The activity of AcrB in LUVs was detected using fluorescence quenching of the dye 8-hydroxy-1,3,6 pyrenetrisulfonate (pyranine), which is incorporated inside the proteoliposomes and is sensitive to the pH changes in its surrounding. The inactive AcrB variant with a substitution in the proton relay network, D407N, showed no activity in proteoliposomes, which correlates with the measurements done in empty liposomes. When AcrA was co-reconstituted with AcrB D407N proteoliposomes it did not restore protein activity. To test the assembly of the AcrAB-TolC pump out of its single components, an in vitro assay was established where the complex assembly was tested with AcrAB- and TolC-containing liposomes. These experiments showed putative AcrAB-TolC formation in the presence or absence of a pump substrate, taurocholate, as well as in the presence of the pump inhibitor, MBX3132. The assembly appeared stable over time and results were invariant in the presence or absence of a pH gradient across the AcrAB-containing membrane. After determination of the ATPase activity of the P-type ATPase, CopA, in detergent micelles, the protein was reconstituted in LUVs. Quenching of the Ag+-sensitive dye Phen Green SK (PGSK), present on the inside of the CopA-containing proteoliposomes, was observed in presence of ATP and Ag+. Under the same conditions, but in absence of Ag+-ions, quenching was reduced by 80 % after 300 seconds. No PGSK-quenching was observed in control liposomes in the presence of ATP and Ag+. The additional presence of sodium azide led to minimal reduction of the PGSK-quenching as expected since sodium azide is not an inhibitor of P-type ATPases, but the quenching rate was similar to that of the same experimental condition with control liposomes. The RND superfamily member CusA, as part of the tripartite CusCBA efflux pump, has been proposed to sequester Ag+ or Cu+ from either the cytoplasmic or periplasmic side of the inner membrane. The periplasmic transport of silver ions was implied from an in vitro assay where the quenching of a pH sensitive dye, 9-amino-6-chloro-2-methoxyacridine (ACMA), indicates acidification of the lumen of the proteoliposomes containing CusA when an inwardly directed pH was imposed. The same experiment with the CusA D405N variant, which was previously reported to be an inactive variant, also led to ACMA quenching, although at a slightly lower rate. Under application of an inwardly directed pH and a  (negative inside), CusA-containing proteoliposomes showed a strong quenching of the incorporated PGSK dye, suggesting strong Ag+ influx. The Major Facilitator Superfamily-(MFS-) type EmrAB-TolC pump has an analogous structural setup as the RND-type AcrAB-TolC pump. To examine the efflux of one of its substrates, carbonyl - cyanide m-chlorophenylhydrazone (CCCP), a plate-based susceptibility assay was used. The presence of the EmrAB-TolC pump confers lower susceptibility levels towards CCCP in E. coli, compared to cells not expressing the pump or cells expressing only the MFS component, indicating that EmrAB-TolC extrudes CCCP. The work done in this study opens up a path towards investigation of drug and metal resistance in vitro. The methodologies to obtain proteoliposomal samples of multicomponent efflux pumps and subsequent measurements of drug/metal ion and H+ fluxes, as well as the determination of pump assembly are crucial for the future research on pump catalysis and transport kinetics. The in vivo drug-plate assays done in this work provide initial insights for future investigations of the drug susceptibility of E. coli expressing the MFS-type tripartite efflux pumps.

Download full text files

Export metadata

Author:Selena Đorđević-Marquardt
Place of publication:Frankfurt am Main
Referee:Klass Martinus PosORCiD, Clemens Glaubitz
Advisor:Klass Martinus Pos
Document Type:Doctoral Thesis
Date of Publication (online):2021/07/26
Year of first Publication:2021
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/07/21
Release Date:2021/10/13
Page Number:229
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Licence (German):License LogoDeutsches Urheberrecht